166
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Uncomposted Sheep and Cow Manures as a Source of Commercial Humic Amendments: An Exploratory Study

, , , , , & show all
Pages 1137-1156 | Received 26 Apr 2014, Accepted 03 Nov 2014, Published online: 28 Apr 2015

References

  • Adani, F., and M. Spagnol. 2008. Humic acid formation in artificial soils amended with compost at different stages of organic matter evolution. Journal of Environmental Quality 37: 1608–16. doi:10.2134/jeq2007.0108
  • Almendros, G., J. Dorado, F. J. González-Vila, M. J. Blanco, and U. Lankes. 2000. 13C NMR assessment of decomposition patterns during composting of forest and shrub biomass. Soil Biology and Biochemistry 32: 793–804. doi:10.1016/S0038-0717(99)00202-3
  • Andreux, F. 1979. Génèse et propriétés des molécules humiques. In Pédologie, vol. 2: Constituants et Propriétés du Sol, ed. M. Bonneau and B. Souchier, 97–122. Paris, France: Masson.
  • Arancon, N. Q., S. Lee, C. A. Edwards, and R. Atiyeh. 2003. Effects of humic acids derived from cattle, food, and paper waste vermicomposts on grown of greenhouse plants. Pedobiologia 47: 741–44.
  • Arfaioli, P., G. G. Riston, M. Bosetto, and P. Fusi. 1997. Humic-like compounds formed from L-tryptophan and D-glucose in the presence of Cu(II). Chemosphere 35: 575–84. doi:10.1016/S0045-6535(97)00121-5
  • Arfaioli, P., F. C. Ugolini, M. Bosetto, and G. Corti. 2003. Synthesis of humic-like substances under sterile and nonsterile conditions in the presence of quartz and volcanic ash. Communications in Soil Science and Plant Analysis 34: 285–98. doi:10.1081/CSS-120017432
  • Azcona, I., I. Pascual, J. Aguirreolea, M. Fuentes, J. M. García-Mina, and M. Sánchez-Díaz. 2011. Growth and development of pepper are affected by humic substances derived from composted sludge. Journal of Plant Nutrition and Soil Science 174: 916–24. doi:10.1002/jpln.201000264
  • Caricasole, P., M. R. Provenzano, P. G. Hatcher, and N. Senesi. 2010. Chemical characteristics of dissolved organic matter during composting of different organic wastes assessed by 13C-CPMAS NMR spectroscopy. Bioresource Technology 101: 8232–36. doi:10.1016/j.biortech.2010.05.095
  • Caricasole, P., M. R. Provenzano, P. G. Hatcher, and N. Senesi. 2011. Evolution of organic matter during composting of different organic wastes assessed by CPMAS 13C NMR spectroscopy. Waste Management 31: 411–15. doi:10.1016/j.wasman.2010.09.020
  • Chen, Y., N. Senesi, and M. Schnitzer. 1977. Information provided on humic substances by E4/E6 ratios. Soil Science Society of America Journal 41: 352–58. doi:10.2136/sssaj1977.03615995004100020037x
  • Chin, Y.-P., G. Aiken, and E. O. Loughlin. 1994. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science and Technology 28: 1853–58. doi:10.1021/es00060a015
  • El Fels, L., M. Zamama, A. El Asli, and M. Hafidi. 2014. Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. International Biodeterioration & Biodegradation 87: 128–37. doi:10.1016/j.ibiod.2013.09.024
  • Eyheraguibel, B., J. Silvestre, and P. Morard. 2008. Effects of humic substances derived from organic waste enhancement on the growth and mineral nutrition of maize. Bioresource Technology 99: 4206–12. doi:10.1016/j.biortech.2007.08.082
  • Fuentes, M., R. Baigorri, G. González-Gaitano, and J. M. García-Mina. 2007. The complementary use of 1H NMR, 13C-NMR, FTIR and size exclusion chromatography to investigate the principal structural changes associated with composting of organic materials with diverse origin. Organic Geochemistry 38: 2012–23. doi:10.1016/j.orggeochem.2007.08.007
  • Fuentes, M., G. González-Gaitano, and J. M. García-Mina. 2006. The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Organic Geochemistry 37: 1949–59. doi:10.1016/j.orggeochem.2006.07.024
  • Fukushima, M., K. Yamamoto, K. Ootsuka, T. Komai, T. Aramaki, S. Ueda, and S. Horiya. 2009. Effects of the maturity of wood waste compost on the structural features of humic acids. Bioresource Technology 100: 791–97. doi:10.1016/j.biortech.2008.06.030
  • He, X., B. Xi, Z. Wei, X. Guo, M. Li, D. An, and H. Liu. 2011. Spectroscopic characterization of water extractable organic matter during composting of municipal solid waste. Chemosphere 82: 541–48. doi:10.1016/j.chemosphere.2010.10.057
  • Hernando, V., B. C. Ortega, and C. Fortún. 1977. Estudio de la acción ejercida sobre la planta de maíz por dos tipos de ácido húmico. In Soil organic matter studies, vol. 2. Rapp. IAEA-SM-211/57, 307–17. Oxford, UK: Pergamon Press.
  • Hernando, V., M. P. Sánchez Conde, and B. C. Ortega. 1970a. Acción del humato sódico sobre el desarrollo de diversas plantas. Anales de Edafología y Agrobiología 29: 791–809.
  • Hernando, V., M. P. Sánchez Conde, and B. C. Ortega. 1970b. Acción del ácido húmico sobre la planta de maíz cultivada en soluciones nutritivas equilibradas de concentración superior a la normal. Anales de Edafología y Agrobiología 29: 835–46.
  • Hu, Z., Y. Liu, G. Chen, X. Gui, T. Chen, and X. Zhan. 2011. Characterization of organic matter degradation during composting of manure-straw mixtures spiked with tetracyclines. Bioresource Technology 102: 7329–34. doi:10.1016/j.biortech.2011.05.003
  • Jokic, A., A. I. Frenkel, and P. M. Huang. 2001. Effect of light on birnessite catalysis of the Maillard reaction and its implication in humification. Canadian Journal of Soil Science 81: 277–83. doi:10.4141/S00-072
  • Kalbitz, K., J. Schmerwitz, D. Schwesig, and E. Matzner. 2003. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113: 273–91. doi:10.1016/S0016-7061(02)00365-8
  • Korshin, G. V., C.-W. Li, and M. M. Benjamin. 1997. Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Research 31: 1787–95. doi:10.1016/S0043-1354(97)00006-7
  • Lee, Y. S., and R. J. Bartlett. 1976. Stimulation of plant growth by humic substances. Soil Science Society of America Journal 40: 876–79. doi:10.2136/sssaj1976.03615995004000060023x
  • Makni, H., L. Ayed, M. Ben Khedher, and A. Bakhrouf. 2010. Evaluation of the maturity of organic waste composts. Waste Management and Research 28: 489–95. doi:10.1177/0734242X09350786
  • Masciandaro, G., B. Ceccanti, V. Ronchi, S. Benedicto, and L. Howard. 2002. Humic substances to reduce salt effect on plant germination and growth. Communications in Soil Science and Plant Analysis 33: 365–78. doi:10.1081/CSS-120002751
  • Morard, P., B. Eyheraguibel, M. Morard., and J. Silvestre. 2010. Direct effects of humic-like substance on growth, water, and mineral nutrition of various species. Journal of Plant Nutrition 34: 46–59. doi:10.1080/01904167.2011.531358
  • Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In Methods of soil analysis, part 3: Chemical methods, ed. D. L. Sparks, 961–1010. Madison: ASA-SSSA.
  • Peuravuori, J., P. Ongman, K. Pihlaja, and R. Koivikko. 2001. Comparisons of sorption of aquatic humic matter by DAX-8 and XAD-8 resins from solid-state 13C-NMR spectroscopy’s point of view. Talanta 55: 733–42. doi:10.1016/S0039-9140(01)00478-7
  • Piccolo, A. 2002. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Advances in Agronomy 75: 57–134. doi:10.1016/S0065-2113(02)75003-7
  • Pospisilová, L., and N. Fasurová. 2009. Spectroscopic characteristics of humic acids originated in soils and leonardite. Soil and Water Research 4: 168–75.
  • Rose, M. T., A. F. Patti, K. R. Little, A. L. Brown, W. R. Jackson, and T. R. Cavagnaro. 2014. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Advances in Agronomy 124: 37–89. doi:10.1016/B978-0-12-800138-7.00002-4
  • Silva, M. E. F., L. T. De Lemos, O. C. Nunes, and A. C. Cunha-Queda. 2014. Influence of the composition of the initial mixtures on the chemical composition, physicochemical properties, and humic-like substances content of composts. Waste Management 34: 21–27. doi:10.1016/j.wasman.2013.09.011
  • Simpson, A. J., W. L. Kingery, M. H. B. Hayes, M. Spraul, E. Humpfer, P. Dvortsak, R. Kerssebaum, M. Godejohann, and M. Hofmann. 2002. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften 89: 84–88. doi:10.1007/s00114-001-0293-8
  • Som, M.-P., L. Lemée, and A. Amblès. 2009. Stability and maturity of a green waste and biowaste compost assessed on the basis of a molecular study using spectroscopy, thermal analysis, thermodesorption, and thermochemolysis. Bioresource Technology 100: 4404–16. doi:10.1016/j.biortech.2009.04.019
  • Song, G., E. H. Novotny, A. J. Simpson, C. E. Clapp, and M. H. B. Hayes. 2008. Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. European Journal of Soil Science 59: 505–16. doi:10.1111/j.1365-2389.2007.01006.x
  • Soon, Y. K., and S. Abboud. 1991. A comparison of some methods for soil organic carbon determination. Communications in Soil Science and Plant Analysis 22: 943–54. doi:10.1080/00103629109368465
  • Stevenson, F. J. 1982. Humus chemistry: Genesis, composition, and reactions. New York: Wiley & Sons.
  • Tan, K. H. 2003. Humic matter in soil and the environment: Principles and controversies. New York: Marcel Dekker.
  • Tan, K. H., J. C. Lobartini, D. S. Himmelsbach, and L. E. Asmussen. 1991. Composition of humic acids extracted under air and nitrogen atmosphere. Communications in Soil Science and Plant Analysis 22: 861–77. doi:10.1080/00103629109368460
  • Valdrighi, M. M., A. Pera, S. Scatena, M. Agnolucci, and G. Vallini. 1995. Effects of humic acids extracted from mined lignite or composted vegetable residues on plant growth and soil microbial populations. Compost Science and Utilization 3: 30–38. doi:10.1080/1065657X.1995.10701766
  • Vaughan, D., and R. E. Malcolm. 1985. Influence of humic substances on growth and physiological processes. In Soil organic matter and biological activity, ed. D. Vaughan and R. E. Malcolm, 37–75. Dordrecht, the Netherlands: Martinus Nijhoff.
  • Veeken, A., K. Nierop, V. De Wilde, and B. Hamelers. 2000. Characterisation of NaOH-extracted humic acids during composting of a biowaste. Bioresource Technology 72: 33–41. doi:10.1016/S0960-8524(99)90096-2
  • Verlinden, G., B. Pycke, J. Mertens, F. Debersaques, K. Verheyen, G. Baert, J. Bries, and G. Haesaert. 2009. Application of humic substances results in consistent increases in crop yield and nutrient uptake. Journal of Plant Nutrition 32: 1407–26. doi:10.1080/01904160903092630
  • Wang, K., W. Li, X. Gong, Y. Li, C. Wu, and N. Ren. 2013. Spectral study of dissolved organic matter in biosolid during the composting process using inorganic bulking agent: UV–vis, GPC, FTIR, and EEM. International Biodeterioration and Biodegradation 85: 617–23. doi:10.1016/j.ibiod.2013.03.033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.