403
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Continuous 13C and 15N Labeling of Tree Litter using a Climate-Controlled Chamber

, , &
Pages 2721-2733 | Received 06 Aug 2014, Accepted 27 May 2015, Published online: 17 Nov 2015

References

  • Aerts, R. 1996. Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology 84:597–608. doi:10.2307/2261481.
  • Berg, J. D., P. F. Hendrix, W. X. Cheng, and A. L. Dillard. 1991. A labeling chamber for 13C enrichment of plant tissue for decomposition studies. Agriculture, Ecosystems and Environment 34:421–25. doi:10.1016/0167-8809(91)90125-H.
  • Bromand, S., J. K. Whalen, H. H. Janzen, J. K. Schjoerring, and B. H. Ellert. 2001. A pulse-labelling method to generate 13C-enriched plant materials. Plant and Soil 235:253–57. doi:10.1023/A:1011922103323.
  • Comstedt, D., B. Boström, J. D. Marshall, A. Holm, M. Slaney, S. Linder, and A. Ekblad. 2006. Effects of elevated atmospheric carbon dioxide and temperature on soil respiration in a boreal forest using δ13C as a labeling tool. Ecosystems 9:1266–77. doi:10.1007/s10021-006-0110-5.
  • DeNiro, M. J., and S. Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45:341–51. doi:10.1016/0016-7037(81)90244-1.
  • Dyckmans, J., H. Flessa, Z. Shangguan, and F. Beese. 2000. A dual 13C and 15N long-term labelling technique to investigate uptake and translocation of C and N in beech (Fagus sylvatica L.). Isotopes in Environmental and Health Studies 36:63–78. doi:10.1080/10256010008032933.
  • Eißfeller, V. 2013. Tree species as determinants of the structure of oribatid mite communities (Oribatida) and the incorporation of plant carbon and nitrogen in the soil animal food web. Ph.D. dissertation, Georg August University, Göttingen, Germany.
  • Eißfeller, V., F. Beyer, K. Valtanen, D. Hertel, M. Maraun, A. Polle, and S. Scheu. 2013. Incorporation of plant carbon and microbial nitrogen into the rhizosphere food web of beech and ash. Soil Biology and Biochemistry 62:76–81. doi:10.1016/j.soilbio.2013.03.002.
  • Fahey, T. J., J. B. Yavitt, R. E. Sherman, P. M. Groffman, M. C. Fisk, and J. C. Maerz. 2011. Transport of carbon and nitrogen between litter and soil organic matter in a northern hardwood forest. Ecosystems 14:326–40. doi:10.1007/s10021-011-9414-1.
  • Fahey, T. J., J. B. Yavitt, R. E. Sherman, J. C. Maerz, P. M. Groffman, M. C. Fisk, and P. J. Bohlen. 2013. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest. Ecological Applications 23:1185–201. doi:10.1890/12-1760.1.
  • Fry, B. 2006. Chapter 2: Isotope notation and measurement. In Stable Isotope Ecology, ed. B. Fry, 21–39. New York: Springer.
  • Glaser, B., M. Benesch, M. Dippold, and W. Zech. 2012. In situ 15N and 13C labeling of indigenous and plantation tree species in a tropical mountain forest (Munessa, Ethiopia) for subsequent litter and soil organic matter turnover studies. Organic Geochemistry 42:1461–69. doi:10.1016/j.orggeochem.2011.06.010.
  • Gregory, P. J., and B. J. Atwell. 1991. The fate of carbon in pulse-labelled crops of barley and wheat. Plant and Soil 136:205–13. doi:10.1007/BF02150051.
  • Grime, J. P., and R. Hunt. 1975. Relative growth rate: Its range and adaptive significance in a local flora. Journal of Ecology 63:393–422. doi:10.2307/2258728.
  • Horowitz, M. E., T. J. Fahey, J. B. Yavitt, T. R. Feldpausch, and R. E. Sherman. 2009. Patterns of late-season photosynthate movement in sugar maple saplings. Canadian Journal of Forest Research 39:2294–98. doi:10.1139/X09-144.
  • Horwath, W. R., K. S. Pregitzer, and E. A. Paul. 1994. 14C allocation in tree soil systems. Tree Physiology 14:1163–76. doi:10.1093/treephys/14.10.1163.
  • Huang, C. Y. 2008. Mechanisms and impacts of earthworm invasions on native earthworm species and soil nutrient dynamics. Ph.D. dissertation, University of Georgia, Athens, GA, USA.
  • Hunt, R., and J. H. C. Cornelissen. 1997. Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytologist 135:395–417. doi:10.1046/j.1469-8137.1997.00671.x.
  • Johnson, D., J. R. Leake, N. Ostle, P. Ineson, and D. J. Read. 2002. In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytologist 153:327–34. doi:10.1046/j.0028-646X.2001.00316.x.
  • Kagawa, A., A. Sugimoto, and T. C. Maximov. 2006. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell and Environment 29:1571–84. doi:10.1111/pce.2006.29.issue-8.
  • Maraun, M., G. Erdmann, B. M. Fischer, M. M. Pollierer, R. A. Norton, K. Schneider, and S. Scheu. 2011. Stable isotopes revisited: Their use and limits for oribatid mite trophic ecology. Soil Biology and Biochemistry 43:877–82. doi:10.1016/j.soilbio.2011.01.003.
  • McCutchan, J. H., W. M. Lewis, C. Kendall, and C. C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–90. doi:10.1034/j.1600-0706.2003.12098.x.
  • Moore-Kucera, J., and R. P. Dick. 2008. A pulse-chase method to 13carbon-label Douglas-fir seedlings for decomposition studies. Soil Science 173:46–53. doi:10.1097/ss.0b013e31815a665f.
  • Neilson, R., B. Boag, and M. Smith. 2000. Earthworm δ13C and δ15N analyses suggest that putative functional classifications of earthworms are site-specific and may also indicate habitat diversity. Soil Biology and Biochemistry 32:1053–61. doi:10.1016/S0038-0717(00)00013-4.
  • Neufeld, J. D., M. Wagner, and J. C. Murrell. 2007. Who eats what, where, and when? Isotope labeling experiments are coming of age. ISME Journal 1:103–10.
  • Pollierer, M. M., R. Langel, S. Scheu, and M. Maraun. 2009. Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biology and Biochemistry 41:1221–26. doi:10.1016/j.soilbio.2009.03.002.
  • Post, D. M. 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83:703–18. doi:10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2.
  • R Development Core Team. 2013. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.
  • Rubino, M., J. A. J. Dungait, R. P. Evershed, T. Bertolini, P. De Angelis, A. D’Onofrio, A. Lagomarsino, C. Lubritto, A. Merola, F. Terrasi, and M. F. Cotrufo. 2010. Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidences from a 13C labeled-leaf litter experiment. Soil Biology and Biochemistry 42:1009–16. doi:10.1016/j.soilbio.2010.02.018.
  • Scheu, S., and M. Falca. 2000. The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: Stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123:285–96. doi:10.1007/s004420051015.
  • Schneider, K., S. Migge, R. A. Norton, S. Scheu, R. Langel, A. Reineking, and M. Maraun. 2004. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). Soil Biology and Biochemistry 36:1769–74. doi:10.1016/j.soilbio.2004.04.033.
  • Soong, J. L., D. Reuss, C. Pinney, T. Boyack, M. L. Haddix, C. E. Stewart, and M. F. Cotrufo. 2014. Design and operation of a continuous 13C and 14N labeling chamber for uniform or differential, metabolic and structural, plant isotope labeling. Journal of Visualized Experiment 16 (83):e51117. doi:10.3791/51117.
  • Staddon, P. L., N. Ostle, L. A. Dawson, and A. H. Fitter. 2003. The speed of soil carbon throughput in an upland grassland is increased by liming. Journal of Experimental Botany 54:1461–69. doi:10.1093/jxb/erg153.
  • Tu, T. T. N., P. Biron, K. Maseyk, P. Richard, B. Zeller, K. Quénéa, M. Alexis, G. Bardoux, V. Vaury, C. Girardin, V. Pouteau, D. Billiou, and T. Bariac. 2013. Variability of 13C-labeling in plant leaves. Rapid Communications in Mass Spectrometry 27:1961–68.
  • Uchida, T., N. Kaneko, M. T. Ito, K. Futagami, T. Sasaki, and A. Sugimoto. 2004. Analysis of the feeding ecology of earthworms (Megascolecidae) in Japanese forests using gut content fractionation and δ15N and δ13C stable isotope natural abundances. Applied Soil Ecology 27:153–63. doi:10.1016/j.apsoil.2004.04.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.