124
Views
7
CrossRef citations to date
0
Altmetric
Articles

Arbuscular Mycorrhizal Association for Growth and Nutrients Assimilation of Pharagmites japonica and Polygonum cuspidatum Plants Growing on River Bank Soil

, , &
Pages 87-100 | Received 26 Aug 2014, Accepted 01 Mar 2015, Published online: 30 Dec 2015

References

  • Amora-Lazcano, E., M. Vazquez, and R. Azcon. 1998. Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biology and Fertility of Soils 27 (1):65–70. doi:10.1007/s003740050401.
  • Asaeda, T., M. B. Baniya, and M. H. Rashid. 2011. Effect of floods on the growth of Phragmites japonica on the sediment bar of regulated rivers: A modelling approach. International Journal of River Basin Management 9 (3–4):211–20. doi:10.1080/15715124.2011.613837.
  • Asaeda, T., P. I. Gomes, and E. Takeda. 2010. Spatial and temporal tree colonization in a midstream sediment bar and the mechanisms governing tree mortality during a flood event. River Research and Applications 26 (8):960–76.
  • Asaeda, T., and M. H. Rashid. 2012. The impacts of sediment released from dams on downstream sediment bar vegetation. Journal of Hydrology 430–431:25–38. doi:10.1016/j.jhydrol.2012.01.040.
  • Asghari, H. R., and T. R. Cavagnaro. 2011. Arbuscular mycorrhizas enhance plant interception of leached nutrients. Functional Plant Biology 38 (3):219–26. doi:10.1071/FP10180.
  • Atul-Nayyar, A., C. Hamel, K. Hanson, and J. Germida. 2009. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19 (4):239–46. doi:10.1007/s00572-008-0215-0.
  • Azami, K., H. Suzuki, and S. Toki. 2004. Changes in riparian vegetation communities below a large dam in a monsoonal region: Futase Dam, Japan. River Research and Applications 20 (5):549–63. doi:10.1002/(ISSN)1535-1467.
  • Barrett, G., C. Campbell, A. Fitter, and A. Hodge. 2011. The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Applied Soil Ecology 48 (1):102–05. doi:10.1016/j.apsoil.2011.02.002.
  • Black, C. A. 1965. Methods of soil analysis, part I: Physical and mineralogical properties. Madison, WI: American Society of Agronomy.
  • Bray, R. H., and L. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59 (1):39–46. doi:10.1097/00010694-194501000-00006.
  • Brundrett, M. 2004. Diversity and classification of mycorrhizal associations. Biological Reviews 79 (3):473–95. doi:10.1017/S1464793103006316.
  • Carson, W. P., and G. W. Barrett. 1988. Succession in old-field plant communities: Effects of contrasting types of nutrient enrichment. Ecology 69 (4):984–94. doi:10.2307/1941253.
  • Conversa, G., C. Lazzizera, A. Bonasia, and A. Elia. 2013. Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. Biology and Fertility of Soils 49 (6):691–703. doi:10.1007/s00374-012-0757-3.
  • Corkidi, L., and E. Rincón. 1997. Arbuscular mycorrhizae in a tropical sand dune ecosystem on the Gulf of Mexico. Mycorrhiza 7 (1):17–23. doi:10.1007/s005720050158.
  • Foster, B. L., and K. L. Gross. 1998. Species richness in a successional grassland: Effects of nitrogen enrichment and plant litter. Ecology 79 (8):2593–602. doi:10.1890/0012-9658(1998)079[2593:SRIASG]2.0.CO;2.
  • Fujiyoshi, M., A. Kagawa, T. Nakatsubo, and T. Masuzawa. 2006. Effects of arbuscular mycorrhizal fungi and soil developmental stages on herbaceous plants growing in the early stage of primary succession on Mount Fuji. Ecological Research 21 (2):278–84. doi:10.1007/s11284-005-0117-y.
  • Gerdemann, J. W., and T. H. Nicolson. 1963. Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46 (2):235–44. doi:10.1016/S0007-1536(63)80079-0.
  • Giller, P. S., and B. Malmqvist. 1998. The biology of streams and rivers. Oxford, UK: Oxford University Press.
  • Govindarajulu, M., P. E. Pfeffer, H. Jin, J. Abubaker, D. D. Douds, J. W. Allen, H. Bücking, P. J. Lammers, and Y. Shachar-Hill. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435 (7043):819–23. doi:10.1038/nature03610.
  • Harley, J., and E. Harley. 1987a. A checklist of mycorrhiza in the British flora—Addenda, errata and index. New Phytologist 107 (4):741–49. doi:10.1111/nph.1987.107.issue-4.
  • Harley, J. L., and E. Harley. 1987b. A checklist of mycorrhiza in the British flora. New Phytologist 105 (s1):1–102. doi:10.1111/nph.1987.105.issue-s1.
  • Harner, M. J., N. Opitz, K. Geluso, K. Tockner, and M. C. Rillig. 2011. Arbuscular mycorrhizal fungi on developing islands within a dynamic river floodplain: An investigation across successional gradients and soil depth. Aquatic Sciences 73 (1):35–42. doi:10.1007/s00027-010-0157-4.
  • Higo, M., K. Isobe, D.-J. Kang, K. Ujiie, R. A. Drijber, and R. Ishii. 2010. Inoculation with arbuscular mycorrhizal fungi or crop rotation with mycorrhizal plants improves the growth of maize in limed acid sulfate soil. Plant Production Science 13 (1):74–79. doi:10.1626/pps.13.74.
  • Hodge, A., C. D. Campbell, and A. H. Fitter. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413 (6853):297–99. doi:10.1038/35095041.
  • Hodge, A., T. Helgason, and A. Fitter. 2010. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology 3 (4):267–73. doi:10.1016/j.funeco.2010.02.002.
  • Hoeksema, J. D., V. B. Chaudhary, C. A. Gehring, N. C. Johnson, J. Karst, R. T. Koide, A. Pringle, C. Zabinski, J. D. Bever, and J. C. Moore. 2010. A meta-analysis of context‐dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters 13 (3):394–407. doi:10.1111/j.1461-0248.2009.01430.x.
  • Jacobson, K. 2004. The effects of flooding regimes on mycorrhizal associations of Populus fremontii in dryland riparian forests. In Fungi in forest ecosystems: Diversity, systematics, and ecology, 275–80. New York: New York Botanical Garden.
  • Johansen, A., I. Jakobsen, and E. Jensen. 1994. Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant and Soil 160 (1):1–9. doi:10.1007/BF00150340.
  • Kaneko, M., and E. Tanimoto. 2009. Auxin-regulation of hyphal elongation and spore germination in arbuscularmycorrhizal fungus, Gigaspora margarita. Paper read at International Symposium “Root Research and Applications”. Root Rap, 2009. September 2–4, Vienna, Austria: Boku.
  • Kang, S., H. Kang, D. Ko, and D. Lee. 2002. Nitrogen removal from a riverine wetland: A field survey and simulation study of Phragmites japonica. Ecological Engineering 18 (4):467–75. doi:10.1016/S0925-8574(01)00107-0.
  • Kim, M., S.-Y. Jeong, S. J. Yoon, S. J. Cho, Y. H. Kim, M. J. Kim, E. Y. Ryu, and S.-J. Lee. 2008. Aerobic denitrification of Pseudomonas putida AD-21 at different C/N ratios. Journal of Bioscience and Bioengineering 106 (5):498–502. doi:10.1263/jbb.106.498.
  • Koske, R., and J. Gemma. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92 (4):486–88. doi:10.1016/S0953-7562(89)80195-9.
  • Koske, R., and J. Gemma. 1997. Mycorrhizae and succession in plantings of beachgrass in sand dunes. American Journal of Botany 84 (1):118–30. doi:10.2307/2445889.
  • Kowalchuk, G. A., F. A. De Souza, and J. A. Van Veen. 2002. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Molecular Ecology 11 (3):571–81. doi:10.1046/j.0962-1083.2001.01457.x.
  • Leigh, J., A. Hodge, and A. H. Fitter. 2009. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist 181 (1):199–207. doi:10.1111/nph.2009.181.issue-1.
  • Logan, V., P. Clarke, and W. Allaway. 1989. Mycorrhizas and root attributes of plants of coastal sand dunes of New South Wales. Functional Plant Biology 16 (1):141–46.
  • Maeda, M. 1954. The meaning of mycorrhiza in regard to systematic botany. Kumamoto Journal Sciences Series B 3:57–84.
  • McGonigle, T., M. Miller, D. Evans, G. Fairchild, and J. Swan. 1990. A new method which gives an objective measure of colonization of roots by vesicular—Arbuscular mycorrhizal fungi. New Phytologist 115 (3):495–501. doi:10.1111/nph.1990.115.issue-3.
  • Miller, S., and R. Sharitz. 2000. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Functional Ecology 14 (6):738–48. doi:10.1046/j.1365-2435.2000.00481.x.
  • Mosse, B. 1957. Growth and chemical composition of mycorrhizal and non-mycorrhizal apples. Nature 179:922–24. doi:10.1038/179922b0.
  • Mosse, B. 1973. Advances in the study of vesicular-arbuscular mycorrhiza. Annual Review of Phytopathology 11 (1):171–96. doi:10.1146/annurev.py.11.090173.001131.
  • Murphy, J., and J. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5.
  • Nakatsubo, T. 1997. Effects of arbuscular mycorrhizal infection on the growth and reproduction of the annual legume Kummerowia striata growing in a nutrient-poor alluvial soil. Ecological Research 12 (3):231–37. doi:10.1007/BF02529452.
  • Neagoe, A., V. Iordache, H. Bergmann, and E. Kothe. 2013. Patterns of effects of arbuscular mycorrhizal fungi on plants grown in contaminated soil. Journal of Plant Nutrition and Soil Science 176 (2):273–86. doi:10.1002/jpln.v176.2.
  • Nilsson, C. 1987. Distribution of stream-edge vegetation along a gradient of current velocity. Journal of Ecology 75:513–22. doi:10.2307/2260430.
  • Ortas, I. 2003. Effect of selected mycorrhizal inoculation on phosphorus sustainability in sterile and non-sterile soils in the Harran Plain in South Anatolia. Journal of Plant Nutrition 26 (1):1–17. doi:10.1081/PLN-120016494.
  • Ortas, I. 2008. The effect of mycorrhizal inoculation on forage and non-forage plant growth and nutrient uptake under field conditions. Options Méditerranéennes. Série A: Séminaires Méditerranéens (CIHEAM) 79:463–69.
  • Ortas, I. 2010. Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions. Spanish Journal of Agricultural Research 8 (S1):116–22. doi:10.5424/sjar/201008S1-1230.
  • Ortas, I. 2012. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake, and inoculation effectiveness under long-term field conditions. Field Crops Research 125:35–48. doi:10.1016/j.fcr.2011.08.005.
  • Pinay, G., A. Fabre, P. Vervier, and F. Gazelle. 1992. Control of C, N, P distribution in soils of riparian forests. Landscape Ecology 6 (3):121–32. doi:10.1007/BF00130025.
  • Piotrowski, J. S., Y. Lekberg, M. J. Harner, P. W. Ramsey, and M. C. Rillig. 2008. Dynamics of mycorrhizae during development of riparian forests along an unregulated river. Ecography 31 (2):245–53. doi:10.1111/j.0906-7590.2008.5262.x.
  • Reynolds, H. L., A. E. Hartley, K. M. Vogelsang, J. D. Bever, and P. Schultz. 2005. Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytologist 167 (3):869–80. doi:10.1111/j.1469-8137.2005.01455.x.
  • Rillig, M. C., A. T. Hoye, and A. Carran. 2006. Minimal direct contribution of arbuscular mycorrhizal fungi to DOC leaching in grassland through losses of glomalin-related soil protein. Soil Biology and Biochemistry 38 (9):2967–70. doi:10.1016/j.soilbio.2006.03.022.
  • Rose, S. L. 1988. Above- and belowground community development in a marine sand dune ecosystem. Plant and Soil 109 (2):215–26. doi:10.1007/BF02202087.
  • Sainz, M., and J. Arines. 1988. Effect of indigenous and introduced vesicular-arbuscular mycorrhizal fungi on growth and phosphorus uptake of Trifolium pratense and on inorganic phosphorus fractions in a cambisol. Biology and Fertility of Soils 6 (1):55–60. doi:10.1007/BF00257921.
  • Samuelsson, M.-O., P. Cadez, and L. Gustafsson. 1988. Heat production by the denitrifying bacterium Pseudomonas fluorescens and the dissimilatory ammonium-producing bacterium Pseudomonas putrefaciens during anaerobic growth with nitrate as the electron acceptor. Applied and Environmental Microbiology 54 (9):2220–25.
  • Sarkar, A., T. Islam, G. C. Biswas, S. Alam, M. Hossain, and N. M. Talukder. 2012. Screening for phosphate solubilizing bacteria inhabiting the rhizoplane of rice grown in acidic soil in Bangladesh. Acta Microbiologica et Immunologica Hungarica 59 (2):199–213. doi:10.1556/AMicr.59.2012.2.5.
  • Sekine, H., K. Sakamoto, T. Nishimura, and T. Asaeda. 2012. Development of a simulation model considering vegetation growth and flushing in Arakawa River. KSCE Journal of Civil Engineering 16 (2):239–46. doi:10.1007/s12205-012-0007-0.
  • Smith, F. A., and S. E. Smith. 2011a. What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant and Soil 348 (1–2):63–79. doi:10.1007/s11104-011-0865-0.
  • Smith, S. E., and F. A. Smith. 2011b. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62:227–50. doi:10.1146/annurev-arplant-042110-103846.
  • Smith, S. E., and F. A. Smith. 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104 (1):1–13. doi:10.3852/11-229.
  • Tanaka, Y., and K. Yano. 2005. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant, Cell and Environment 28 (10):1247–54. doi:10.1111/pce.2005.28.issue-10.
  • Tawaraya, K., C. Saito, M. Morioka, and T. Wagatsuma. 1996. Effect of concentration of phosphate on spore germination and hyphal growth of arbuscular mycorrhizal fungus, Gigaspora margarita Becker and Hall. Soil Science and Plant Nutrition 42 (3):667–71. doi:10.1080/00380768.1996.10416336.
  • Tobar, R., R. Azcón, and J. Barea. 1994. Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytologist 126 (1):119–22. doi:10.1111/j.1469-8137.1994.tb07536.x.
  • Treseder, K. K. 2013. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant and Soil 371 (1–2):1–13. doi:10.1007/s11104-013-1681-5.
  • Van der Heijden, M. G. 2010. Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91 (4):1163–71. doi:10.1890/09-0336.1.
  • Veresoglou, S. D., B. Chen, and M. C. Rillig. 2012. Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry 46:53–62. doi:10.1016/j.soilbio.2011.11.018.
  • Veresoglou, S. D., L. J. Shaw, and R. Sen. 2011. Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant and Soil 340 (1–2):481–90. doi:10.1007/s11104-010-0619-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.