110
Views
0
CrossRef citations to date
0
Altmetric
Articles

Design and Validation of an Assay for Isotope Ratio Mass Spectrometry Analysis of Biologically Relevant Dissolved and Heat-Extracted Organic Carbon with Neutral Potassium Phosphate Buffer

, , &
Pages 2017-2025 | Received 13 Jul 2015, Accepted 21 Jun 2016, Published online: 02 Sep 2016

References

  • American Public Health Association, American Water Works Association. 2005. Standard methods for the examination of water and wastewater, 21st ed. Washington, DC: American Public Health Association, American Water Works Association and Water Environment Federation.
  • Baldock, J. A., J. Sanderman, L. M. Macdonald, A. Puccini, B. Hawke, S. Szarvas, and J. McGowan. 2013. Quantifying the allocation of soil organic carbon to biologically significant fractions. Soil Research 51:561–576. doi:10.1071/SR12374.
  • Balesdent, J., A. Mariotti, and B. Guillet. 1987. Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biology and Biochemistry 19:25–30. doi:10.1016/0038-0717(87)90120-9.
  • Bernoux, M., C. C. Cerri, C. Neill, and J. F. L. De Moraes. 1998. The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82:43–58. doi:10.1016/S0016-7061(97)00096-7.
  • Bolan, N. S., D. C. Adriano, A. Kunhikrishnan, T. James, R. McDowell, and N. Senesi. 2011. Dissolved organic matter: Biogeochemistry, dynamics and environmental significance in soils. In Advances in Agronomy, ed. by Donald L. Sparks, Vol. 10. Amsterdam, Netherlands: Elsevier.
  • Cassel, D. K., and D. R. Nielsen. 1986. Field capacity and available water capacity. In Methods of soil analysis, Part 1. Physical and mineralogical methods - Agronomy monograph no. 9, ed. A. Klute, 901–26. 2nd ed. Madison, Wisconsin: American Society of Agronomy - Soil Science Society of America.
  • Coyle, J. S., P. Dijkstra, R. R. Doucett, E. Schwartz, S. C. Hart, and B. A. Hungate. 2009. Relationships between C and N availability, substrate age, and natural abundance 13C and 15N signatures of soil microbial biomass in a semiarid climate. Soil Biology and Biochemistry 41:1605–1611. doi:10.1016/j.soilbio.2009.04.022.
  • Curtin, D., M. H. Beare, M. H. Chantigny, and L. G. Greenfield. 2011. Controls on the extractability of soil organic matter in water over the 20 to 80°C temperature range. Soil Biology and Biochemistry 75:1423–1430.
  • Dalal, R. C. 1998. Soil microbial biomass – what do the numbers really mean? Australian Journal of Experimental Agriculture 38:649–665. doi:10.1071/EA97142.
  • Dalal, R. C., B. A. Cowie, D. E. Allen, and S. A. Yo. 2011. Assessing carbon lability of particulate organic matter from δ13C changes following land-use change from C3 native vegetation to C4 pasture. Soil Research 49:98–103. doi:10.1071/SR10083.
  • De Mendiburu, F. 2014. Agricolae: Statistical procedures for agricultural research. http://cran.r-project.org/web/packages/agricolae/index.html
  • De Mora, A. P., J. J. Ortega-Calvo, F. Cabrera, and E. Madejón. 2005. Changes in enzyme activities and microbial biomass after “in situ” remediation of a heavy metal-contaminated soil. Applied Soil Ecology 28:125–137. doi:10.1016/j.apsoil.2004.07.006.
  • Evans, A., L. W. Zelazny, and C. E. Zipper. 1988. Solution parameters influencing dissolved organic carbon levels in three forest soils. Soil Science Society of America Journal 52:1789–1792. doi:10.2136/sssaj1988.03615995005200060049x.
  • Finn, D., K. Page, K. Catton, E. Strounina, M. Kienzle, F. Robertson, R. Armstrong, and R. C. Dalal. 2015. Effect of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry. Soil Biology and Biochemistry 91:160–168. doi:10.1016/j.soilbio.2015.09.001.
  • Fry, B. 2006. Stable isotope ecology. New York, NY, USA: Springer Science and Business Media, LLC.
  • Ghani, A., M. Dexter, and K. W. Perrott. 2003. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biology and Biochemistry 35:1231–1243. doi:10.1016/S0038-0717(03)00186-X.
  • Ghani, A., U. Sarathchandra, S. Ledgard, M. Dexter, and S. Lindsey. 2013. Microbial decomposition of leached or extracted dissolved organic carbon and nitrogen from pasture soils. Biology and Fertility of Soils 49:747–755. doi:10.1007/s00374-012-0764-4.
  • Gregorich, E. G., B. C. Liang, C. F. Drury, A. F. Mackenzie, and W. B. McGill. 2000. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agricultural soils. Soil Biology and Biochemistry 32:581–587. doi:10.1016/S0038-0717(99)00146-7.
  • Haney, R. L., A. J. Franzluebbers, F. M. Hons, L. R. Hossner, and D. A. Zuberer. 2001. Molar concentration of K2SO4 and soil pH affect estimation of extractable C with chloroform-fumigation-extraction. Soil Biology and Biochemistry 33:1501–1507. doi:10.1016/S0038-0717(01)00065-7.
  • Harris, D., L. K. Porter, and E. A. Paul. 1997. Continuous flow isotope ratio mass spectrometry of carbon dioxide trapped as strontium carbonate. Communications in Soil Science and Plant Analysis 28:747–757. doi:10.1080/00103629709369827.
  • Haynes, R. J. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy 85:221–268.
  • Haynes, R. J., and G. S. Francis. 1993. Changes in microbial biomass C, soil carbohydrate composition and aggregate stability induced by growth of selected crop and forage species under field conditions. Journal of Soil Science 44:665–675. doi:10.1111/ejs.1993.44.issue-4.
  • Jones, D. L., and V. B. Willett. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry 38:991–999. doi:10.1016/j.soilbio.2005.08.012.
  • Kuzyakov, Y. 2004. Separation of root and rhizomicrobial respiration by natural 13C abundance: Theoretical approach, advantages, and difficulties. Eurasian Soil Science 37:S79–S84.
  • Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22. doi:10.1016/j.geoderma.2004.01.032.
  • Murage, E. W., and P. R. Voroney. 2007. Modification of the original chloroform fumigation extraction technique to allow measurement of δ13C of soil microbial biomass carbon. Soil Biology and Biochemistry 39:1724–1729. doi:10.1016/j.soilbio.2007.01.026.
  • Parr, R. M., and S. A. Clements 1991. Intercomparison of enriched stable isotope reference materials for medical and biological studies. IAEA Report NAHRES-5, International Atomic Energy Agency, 31. Amsterdam, The Netherlands: Elsevier.
  • Phillips, D., and J. Gregg. 2003. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136:261–269. doi:10.1007/s00442-003-1218-3.
  • Potthoff, M., N. Loftfield, F. Buegger, B. Wick, B. John, R. G. Joergensen, and H. Flessa. 2003. The determination of δ13C in soil microbial biomass using fumigation-extraction. Soil Biology and Biochemistry 35:947–954. doi:10.1016/S0038-0717(03)00151-2.
  • Powlson, D. S., P. C. Brookes, and B. T. Christensen. 1987. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry 19:159–164. doi:10.1016/0038-0717(87)90076-9.
  • R Core Team. 2013. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for statistical computing.
  • Rayment, G. E., and D. J. Lyons. 2010. Soil chemical methods – Australasia. Collingwood, VIC, Australia: CSIRO Publishing.
  • Singh, B. P., A. L. Cowie, and R. J. Smernik. 2012. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environmental Science and Technology 46:11770–11778. doi:10.1021/es302545b.
  • Sparling, G., M. Vojvodić-Vuković, and L. A. Schipper. 1998. Hot-water-soluble C as a simple measure of labile soil organic matter: The relationship with microbial biomass C. Soil Biology and Biochemistry 30:1469–1472. doi:10.1016/S0038-0717(98)00040-6.
  • Von Lützow, M., I. Kögel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner. 2007. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry 39:2183–2207. doi:10.1016/j.soilbio.2007.03.007.
  • Yevdokimov, I., R. Ruser, F. Buegger, M. Marx, and J. C. Munch. 2006. Microbial immobilisation of 13C rhizodeposits in rhizosphere and root-free soil under continuous 13C labelling of oats. Soil Biology and Biochemistry 38:1202–1211. doi:10.1016/j.soilbio.2005.10.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.