222
Views
0
CrossRef citations to date
0
Altmetric
Articles

Will the Conventional Soil-Plant Analysis Pass into Oblivion? Rapid and Low-Cost Determination Using Spectroscopy

Pages 705-715 | Received 05 Nov 2015, Accepted 06 Jan 2017, Published online: 19 Apr 2017

References

  • Adar, S. Y., Y. Shkolnisky, and E. Ben Dor. 2014. Change detection of soils under small-scale laboratory conditions using imaging spectroscopy sensors. Geoderma 216:19–29. doi:10.1016/j.geoderma.2013.10.017.
  • Barnes, E. W., K. A. Sudduth, J. W. Hummel, S. M. Lesch, D. L. Corwin, C. Yang, C. S. T. Daughtry, and W. C. Bausch. 2003. Remote- and ground-based sensor techniques to map soil properties. Photogrammetric Engineering and Remote Sensing 69:619–30. doi:10.14358/PERS.69.6.619.
  • Ben-Dor, E. 2002. Quantitative remote sensing of soil properties. Advanced Agronomy 75:173–243.
  • Ben-Dor, E., S. Chabrillat, J. Demattê, G. Taylor, J. Hill, M. Whiting, and S. Sommer. 2009. Using imaging spectroscopy to study soil properties. Remote Sensing of Environment 113:S38–S55. doi:10.1016/j.rse.2008.09.019.
  • Ben-Dor, E., D. Heller, and A. Cudnovsky. 2008b. A novel method of classifying soil profiles in the field using optical means. Soil Science Society of America Journal 72:1113–23. doi:10.2136/sssaj2006.0059.
  • Ben-Dor, E., R. G. Taylor, J. Hill, J. A. M. Demattê, M. L. Whiting, S. Chabrillat, and S. Sommer. 2008a. Imaging spectrometry for soil applications. Advances in Agronomy 97:321–92.
  • Borenstein, A., R. Linker, I. Shmulevich, and A. Shaviv. 2006. Determination of soil nitrate and water content using attenuated total reflectance spectroscopy. Applied Spectroscopy 60:1267–72. doi:10.1366/000370206778998969.
  • Cantarella, H., J. A. Quaggio, B. van Raij, and M. F. Abreu. 2006. Variability of soil analysis of commercial laboratories: Implications for lime and fertilizer recommendations. Communications in Soil Science and Plant Analysis 37:2213–25. doi:10.1080/00103620600817523.
  • Du, C., R. Linker, and A. Shaviv. 2007. Characterization of soils using photoacoustic mid-infrared spectroscopy. Applied Spectroscopy 61:1063–67. doi:10.1366/000370207782217743.
  • Du, C., R. Linker, and A. Shaviv. 2008. Identification of agricultural Mediterranean soils using mid-infrared photoacoustic spectroscopy. Geoderma 143:85–90. doi:10.1016/j.geoderma.2007.10.012.
  • Du, C., J. Zhou, H. Wang, X. Chen, A. Zhu, and J. Zhang. 2009. Determiantion of soil properties using Fourier transform mid-infrared photoacoustic spectroscopy. Vibrational Spectroscopy. 49 (1): 32–37.
  • Gmur, S., V. Daniel, Z. Darlene, and M. L. Monika. 2012. Hyperspectral analysis of soil nitrogen, carbon, carbonate, and organic matter using regression trees. Sensors 12:10639–58. doi:10.3390/s120810639.
  • Gomez, R. B. 2000. The power of hyperspectral technology 2nd international conference on earth. Observation and Environmental Information, Cairo, Egypt, November 11–14.
  • Hill, B. E. (2009) Soil sample handling for routine analysis of plant-available soil potassium. Unpublished M.S. Thesis, Library, Iowa State University, Ames, IA
  • Jahn, B. R., R. Linker, S. K. Upadhyaya, A. Shaviv, D. C. Slaughter, and I. Shmulevich. 2006. Mid infrared spectroscopic determination of soil nitrate content. Biosystems Engineering 94:505–15. doi:10.1016/j.biosystemseng.2006.05.011.
  • Keshavarzi, A., S. Fereydoon, E. S. E. Omran, and M. Iqbal. 2015. A neural network model for estimating soil phosphorus using terrain analysis. Egyptian Journal of Remote Sensing and Space Sciences 18:127–35. doi:10.1016/j.ejrs.2015.06.004.
  • Knox, R.G., R. O. Green, E. M. Middleton, W. Turner, S J. Hook, S. G. Ungar. 2010. The Hyperspectral Infrared Imager (HyspIRI) mission: A new capability for global ecological research and applications. In The 95th ESA Annual Meeting.
  • Labate, D., M. Ceccherini, A. Cisbani, V. De Cosmo, C. Galeazzib, L. Giuntia, M. Melozzia, S. Pieraccinia, and M. Stagia. 2009. The PRISMA payload optomechanical design, a high performance instrument for a new hyperspectral mission. Acta Astronautica, 65(9-10), 1429- 1436.
  • Linker, R., and A. Shaviv. 2009. Emerging techniques for soil analysis via mid-infrared spectroscopy. Geophysical Research Abstracts 11. EGU2009-877, EGU General Assembly.
  • Linker, R., I. Shmulevich, A. Kenny, and A. Shaviv. 2005. Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy. Chemosphere 61:652–58. doi:10.1016/j.chemosphere.2005.03.034.
  • Linker, R., M. Weiner, I. Shmulevich, and A. Shaviv. 2006. Nitrate determination in soil pastes using FTIR-ATR mid-infrared spectroscopy: Improved accuracy via soil identification. Biosystems Engineering 94:111–18. doi:10.1016/j.biosystemseng.2006.01.014.
  • Minasny, B., G. Tranter, A. McBratney, D. Brough, and B. Murphy. 2009. Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties. Geoderma 153:155–62. doi:10.1016/j.geoderma.2009.07.021.
  • Mouazen, A. M., M. R. Maleki, J. De Baerdemaeker, and H. Ramon. 2007. On-line measurement of some selected soil properties using a VIS–NIR sensor. Soil & Tillage Research 93:13–27. doi:10.1016/j.still.2006.03.009.
  • Næs, T., T. Isaksson, T. Fearn, and T. Davies. 2004. A user-friendly guide to multivariate calibration and classification. Chichester, UK: NIR Publications. ISBN: 0-9528666-2-5.
  • Nocita, M., A. Stevens, G. Toth, P. Panagos, B. van Wesemael, and L. Montanarella. 2014. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biology & Biochemistry 68:337–47. doi:10.1016/j.soilbio.2013.10.022.
  • Omran, E. S. E. 2008. Is soil science dead and buried? Future image in the world of 10 billion people. Catrina 3:59–68.
  • Omran, E. S. E. 2012a. Evaluation of the Egyptian soil maps accuracy. Egyptian Journal of Soil Science 52 (1):71–95.
  • Omran, E. S. E. 2012b. Improving the prediction accuracy of soil mapping through geostatistics. International Journal of Geosciences 3:574–90. doi:10.4236/ijg.2012.33058.
  • Omran, E. S. E. 2012c. On-the-go digital soil mapping for precision agriculture. International Journal of Remote Sensing Application 2:20–38.
  • Omran, E. S. E. 2015. Remote estimation of vegetation parameters using narrowband sensor for precision agriculture in arid environment. Egyptian Journal of Soil Science. 55(4): 516–541.
  • Omran, E. S. E. 2016a. Early sensing of peanut leaf spot using spectroscopy and thermal imaging. Archives of Agronomy and Soil Science 1–14. doi:10.1080/03650340.2016.1247952.
  • Omran, E. S. E. 2016b. Early warning information system for land degradation hazards in New Suez Canal region, Egypt. Modeling Earth Systems and Environment 2:103. doi:10.1007/s40808-016-0148-0.
  • Omran, E. S. E. 2016c. Environmental modelling of heavy metals using pollution indices and multivariate techniques in the soils of Bahr El Baqar, Egypt. Modeling Earth Systems and Environment 2:119. doi:10.1007/s40808-016-0178-7.
  • Omran, E. S. E. 2016d. Inference model to predict heavy metals of Bahr El Baqar soils, Egypt using spectroscopy and chemometrics technique. Modeling Earth Systems and Environment 3 (2):200. doi:10.1007/s40808-016-0259-7.
  • Omran, E. E. 2017. Rapid prediction of soil mineralogy using imaging spectroscopy. Eurasian Soil Science. 50(5): 597–612.
  • Piper, C. S. 1944. Soil and plant analysis. Adelaide, South Australia: Inter Science Publication.
  • Plaza, A., J. A. Benediktsson, J. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot, M. Fauvel, P. Gamba, J. A. Gualtieri, M. Marconicini, J. C. Tilton, and G. Trianni. 2009. Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment. doi:10.1016/j.rse.2007.07.028.
  • Rayment, G. E., and F. R. Higginson. 1992. Australian soils and land survey handbook: Australian laboratory handbook of soil and water chemical methods. North Ryde, Sydney, NSW Australia: Inkata Press.
  • Rossel, R. A. V., and T. Behrens. 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158:46–54. doi:10.1016/j.geoderma.2009.12.025.
  • Schmidt, S. B., P. Pedas, K. H. Laursen, J. K. Schjoerring, and S. Husted. 2013. Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements. Plant Soil Environment 372:417–29. doi:10.1007/s11104-013-1702-4.
  • Soriano-Disla, J. M., L. J. Janik, R. A. Viscarra Rossel, L. M. MacDonald, and M. J. McLaughlin. 2014. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Applications Spectroscopic Reviews 49:139–86. doi:10.1080/05704928.2013.811081.
  • Stenberg, B., R. Viscarra Rossel, A. M. Mouazen, and J. Wetterlind. 2010. Visible and near infrared spectroscopy in soil science. Advances in Agronomy 107:163–215.
  • Stuffler, T., C. Kaufnann, S. Hofer, K.-P. Förster, G. Schreier, A. Mueller, A. Eckardt, H. Bach, B. Penné, U. Benz, R. Haydn. 2007. The EnMAP hyperspectral imager–An advanced optical payload for future applications in Earth observation programmes. Acta Astronautica, 61(1–6), 115–120.
  • Stevens, A., B. van Wesemael, H. Bartholomeus, D. Rosillon, B. Tychon, and E. Ben-Dor. 2008. Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma 144:395–404. doi:10.1016/j.geoderma.2007.12.009.
  • Summers, D. (2009) Discriminating and mapping soil variability with hyperspectral reflectance data. PhD thesis, Faculty of science, School of earth and environmental science, Adelaide University.
  • van Maarschalkerweerd, M., and S. Husted. 2015. Recent developments in fast spectroscopy for plant mineral analysis. Frontiers Plant Sciences 6:169. doi:10.3389/fpls.2015.00169.
  • Viscarra Rossel, R. A., D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad. 2006. Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131:59–75. doi:10.1016/j.geoderma.2005.03.007.
  • Weng, Y. L., P. Gong, and Z. L. Zhu. 2008. Soil salt content estimation in the Yellow River delta with satellite hyperspectral data. Canadian Journal of Remote Sensing 34:259–70.
  • Zadeh, M. H., M. H. Tangestani, F. V. Roldan, and I. Yusta. 2013. Sub-pixel mineral mapping of a porphyry copper belt using eo-1 hyperion data. Advances in Space Research 53:440–51. doi:10.1016/j.asr.2013.11.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.