361
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Effect of Elevated [CO2] on Assimilation, Allocation of Nitrogen and Phosphorus by Maize (Zea Mays L.)

, , , &
Pages 1032-1044 | Received 09 Mar 2017, Accepted 01 Mar 2018, Published online: 26 Mar 2018

References

  • Bishop, K. A., A. D. B. Leakey, and E. A. Ainsworth. 2015. How seasonal temperature or water inputs affect the relative response of C3 crops to elevated [CO2]: A global analysis of open top chamber and free air CO2 enrichment studies. Food and Energy Security 3:33–45. doi:10.1002/fes3.44.
  • Bunce, J. A. 2014. Corn growth response to elevated CO2 varies with the amount of nitrogen applied. American Journal of Plant Sciences 5:306–12. doi:10.4236/ajps.2014.53042.
  • Bussotti, F., R. Desotgiu, C. Cascio, R. J. Strasser, G. Gerosa, and R. Marzuoli. 2007. Photosynthesis responses to ozone in young trees of three species with different sensitivities, in a 2-year open-top chamber experiment (Curno, Italy). Physiologia Plantarum 130:122–35. doi:10.1111/j.1399-3054.2007.00894.x.
  • Butterly, C. R., R. Armstrong, D. Chen, and C. X. Tang. 2015. Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2. Plant and Soil 391:367–82. doi:10.1007/s11104-015-2441-5.
  • Cai, C., X. Y. Yin, S. Q. He, W. Y. Jiang, C. F. Si, P. C. Struik, W. H. Luo, G. Li, Y. T. Xie, Y. Xiong, and G. X. Pan. 2016. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology 22:856–74. doi:10.1111/gcb.13065.
  • Chaturvedi, A. K., R. N. Bahuguna, M. Pal, D. Shah, S. Maurya, and K. S. V. Jagadish. 2017. Elevated CO2 and heat stress interactions affect grain yield, quality and mineral nutrient composition in rice under field conditions. Field Crops Research 206:149–57. doi:10.1016/j.fcr.2017.02.018.
  • Cheng, W. G., H. Sakai, K. Yagi, and T. Hasegawa. 2009. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology 149:51–58. doi:10.1016/j.agrformet.2008.07.006.
  • Cheng, W. G., H. Sakai, K. Yagi, and T. Hasegawa. 2010. Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agricultural and Forest Meteorology 150:1174–81. doi:10.1016/j.agrformet.2010.05.001.
  • Cox, M. C., C. O. Qualset, and D. W. Rains. 1985. Genetic variation for nitrogen assimilation and translocation in wheat: II. nitrogen assimilation in relation to grain yield and protein. Crop Science 25:435–40. doi:10.2135/cropsci1985.0011183X002500030003x.
  • Dordas, C. 2009. Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations. European Journal of Agronomy 30:129–39. doi:10.1016/j.eja.2008.09.001.
  • Figueiredo, N., C. Carranca, H. Trindae, J. Pereira, P. Goufo, J. Coutinho, P. Marques, R. Maricato, and A. de Varnenes. 2015. Elevated carbon dioxide and temperature effects on rice yield, leaf greenness and phenological stages duration. Paddy and Water Environment 13:313–24. doi:10.1007/s1033.
  • Guo, J., M. Q. Zhang, X. W. Wang, and W. J. Zhang. 2015. Elevated CO2 facilitates C and N accumulation in a rice paddy ecosystem. Journal of Environmental Sciences 29:27–33. doi:10.1016/j.jes.2014.05.055.
  • Heagle, A. S., D. E. Body, and W. W. Heck. 1973. An open-top field chamber to assess the impact of air pollution on plants. Journal of Environmental Quality 2:365–68. doi:10.2134/jeq1973.00472425000200030014x.
  • Huang, W. J., G. Y. Zhou, J. X. Liu, H. L. Duan, X. Z. Liu, X. Fang, and D. Q. Zhang. 2014. Shifts in soil phosphorus fractions under elevated CO2 and N addition in model forest ecosystems in subtropical China. Plant Ecology 215:1373–84. doi:10.1007/s11258-014-0394-z.
  • IPCC. 2013. Summary for policymakers. In Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, T. F. Stocker, D. Qin, G. K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (eds.), 9–16. Cambridge, United Kingdom and New York: Cambridge University Press.
  • Jing, L. Q., X. Y. Zhao, N. Zhou, X. Q. Qian, Y. X. Wang, J. G. Zhu, Y. L. Wang, and L. X. Yang. 2017. Effect of increasing atmospheric CO2 concentration on photosynthetic diurnal variation characteristics of hybrid rice: A FACE study. Acta Ecologica Sinica 37:2033–44. doi:10.5846/stxb201509261974.
  • Kim, H. Y., M. Lieffering, K. Kobayashi, M. Okada, M. W. Mitchell,And, and M. Gumpertz. 2003. Effects of free air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research 83:261–70. doi:10.1016/S0378-4290(03)00076-5.
  • Kimball, B. A., K. Kobayashi, and M. Bindi. 2002. Responses of agricultural crops to free air CO2 enrichment. Advances in Agronomy 77:293–68. doi:10.1016/S0065-2113(02)77017-X.
  • Krishnan, P., D. K. Swain, B. C. Bhaskar, S. K. Nayak, and R. N. Dash. 2007. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems and Environment 122:233–42. doi:10.1016/j.agee.2007.01.019.
  • Langley, J. A., and J. P. Megonigal. 2010. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466:96–99. doi:10.1038/nature09176.
  • Leakey, A. D. B. 2009. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proceedings of the Royal Society B-Biological Sciences 276:2333–43. doi:10.1098/rspb.2008.1517.
  • Liu, H. J., L. X. Yang, J. Y. Huang, G. C. Dong, J. G. Zhu, G. Liu, and Y. L. Wang. 2009. Effect of free air CO2 enrichment (FACE) on yield formation of Indica rice cultivar Yangdao 6. Journal of Agro-Environment Science 28:299–04.
  • Liu, J. X., W. J. Huang, G. Y. Zhou, D. Q. Zhang, S. Z. Liu, and Y. Y. Li. 2013. Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests. Global Change Biology 19:208–16. doi:10.1111/gcb.12022.
  • Long, S. P., E. A. Ainsworth, A. D. B. Leakey, J. Nösberger, and D. R. Ort. 2006. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–21. doi:10.1126/science.1114722.
  • Luo, Y., B. Su, W. S. Currie, J. S. Dukes, A. Finzi, U. Hartwig, B. Hungate, R. E. McMurtrie, R. Oren, W. J. Parton, D. E. Pataki, R. M. Shaw, D. R. Zak, and C. B. Field. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54:731–39. doi:10.1641/0006-3568(2004)054.
  • Mamatha, H., N. K. S. Rao, R. H. Laxman, K. S. Shivashankara, R. M. Bhatt, and K. C. Pavithra. 2014. Impact of elevated CO2 on growth, physiology, yield, and quality of tomato (Lycopersicon esculentum Mill) cv. Arka Ashish. Photosynthetica 52:519–28. doi:10.1007/s11099-014-0059-0.
  • Manderscheid, R., M. Erbs, and H. J. Weigel. 2012. Interactive effects of free-air CO2 enrichment and drought stress on Maize growth. European Journal of Agronomy 43:97–07. doi:10.1016/j.eja.2012.05.011.
  • Markelz, R. J. C., R. S. Strellner, and A. D. B. Leakey. 2011. Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in Maize. Journal of Experimental Botany 62:3235–46. doi:10.1093/jxb/err056.
  • Masoni, A., L. Ercoli, M. Mariotti, and I. Arduini. 2007. Post-anthesis accumulation and remobilization of dry matter nitrogen and phosphorus in durum wheat as affected by soil type. European Journal of Agronomy 26:179–86. doi:10.1016/j.eja.2006.09.006.
  • Meng, F. C., J. H. Zhang, C. Hao, Z. M. Zhou, H. Li, D. Liu, K. Wang, and H. Zhang. 2015. Effects of elevated CO2 and different irrigation on photosynthetic parameters and yield of maize in Northeast China. Acta Ecologica Sinica 35:2126–35. doi:10.5846/stxb201306041336.
  • Parry, M. L., C. Rosenzweig, A. Iglesias, M. Livermore, and G. Fischer. 2004. Effects of climate change on global food production under SRES emissions and Socio-Economics scenarios. Global Environmental Change 14:53–67. doi:10.1016/j.gloenvcha.2003.10.008.
  • Phillips, D. L., J. J. Lee, and R. F. Dodson. 1996. Sensitivity of the US corn belt to climate change and elevated CO2: I. corn and soybean yields. Agricultural Systems 52:481–82. doi:10.1016/S0308-521X(96)00014-5.
  • Reich, P. B., B. A. Hungate, and Y. Q. Luo. 2006. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology and Systematics 37:611–33. doi:10.1146/annurev.ecolsys.37.091305.110039.
  • Sadras, V. O., R. Bubner, and M. A. Moran. 2012. A large-scale, open-top system to increase temperature in realistic vineyard conditions. Agricultural and Forest Meteorology 154-155:187–94. doi:10.1016/j.agrformet.2011.11.005.
  • Sardans, J., J. Peñuelas, and M. Estiarte. 2006. Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant and Soil 289:227–38. doi:10.1007/s11104-006-9131-2.
  • Sardans, J., J. Peñuelas, P. Prieto, and M. Estiarte. 2008. Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland. Plant and Soil 306:261–71. doi:10.1007/s11104-008-9583-7.
  • Seneweera, S., J. P. Conroy, K. Ishimaru, O. Ghannoum, O. Masumi, and L. Mark. 2002. Changes in source-sink relations during development influence photosynthetic acclimation of rice to free air CO2 enrichment (FACE). Functional Plant Biology 29:945–53. doi:10.1071/PP01250.
  • Shen, S. B., D. H. Zhang, K. F. Yang, Y. X. Wang, J. G. Zhu, L. X. Yang, and Y. L. Wang. 2016. Effect of elevated surface layer ozone concentration on grain quality of two rice cultivars- A FACE study. Chinese Journal of Eco-Agriculture 24:1231–12. doi:10.13930/j.cnki.cjea.160319.
  • Shu, K. L., D. L. Chen, N. Rob, and A. Roger. 2012. Does phosphorus stimulate the effect of elevated [CO2] on growth and symbiotic nitrogen fixation of grain and pasture legumes? Crop and Pasture Science 63:53–62. doi:10.1071/CP11296.
  • Sun, J. W., T. H. Zhao, Y. Fu, Y. X. Zhao, and Y. Shi. 2009. Effects of Elevated CO2 concentration on photo-physiological characteristics of maize leaves. Journal of Maize Sciences 17:81–85. doi:10.13597/j.cnki.maize.science.2009.02.022.
  • Tang, R. H., L. W. Guo, G. Y. Chen, and L. R. Li. 1999. Effect of double atmospheric concentration on rice photosynthesis and Rubisco. Rice Research News Letter 7:7–8.
  • Taub, D. R., and X. Wang. 2008. Why are nitrogen concentrations in plant tissues lower under elevated CO2? a critical examination of the hypotheses. Journal of Integrative Plant Biology 50:1365–74. doi:10.1111/j.1744-7909.2008.00754.x.
  • Walting, J. R., M. C. Press, and W. P. Quick. 2000. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum. Plant Physiology 123:143–52. doi:10.1104/pp.123.3.1143.
  • Wan, Y. F., S. C. You, Y. E. Li, B. Wang, Z. Q. Gao, X. B. Qin, and S. Liu. 2014. Applied effect of improved open-top chamber on simulation in situ of elevating air temperature and CO2 concentration in early rice field. Transactions of the Chinese Society of Agricultural Engineering 30:123–30. doi:10.3969/j.issn.1002-6819.2014.05.016.
  • Wang, D. R., J. A. Bunce, M. B. Tomecek, D. Gealy, A. Mcclung, S. R. Mccouch, and L. H. Ziska. 2016. Evidence for diver- gence of response in Indica,Japonica and wild rice to high CO2 × temperature interaction. Global Change Biology 22:2620–32. doi:10.1111/gcb.13279.
  • Xie, L. Y., X. Sun, H. L. Zhao., Y. X. Feng, and L. Jiang. 2015. Responses of flag leaf photosynthetic pigments at late growth stage and rice yield components to elevated CO2 under FACE system. Chinese Journal of Eco-Agriculture 23:425–31. doi:10.13930/j.cnki.cjea.141258.
  • Xie, X. J., Y. H. Zhang, R. Y. Li, S. Q. Qiu, and Y. X. Bao. 2016. Effects of increase of CO2 concentration and night temperature on growth characteristics and yield of Zhengdan 958. Journal of Henan Agricultural Sciences 45:24–27. doi:10.15933/j.cnki.1004-3268.
  • Yang, L. X., J. Y. Huang, H. J. Yang, G. C. Dong, G. Liu, J. G. Zhu, and Y. L. Wang. 2006. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Research 98:12–19. doi:10.1016/j.fcr.2005.11.003.
  • Yong, Z. H., G. Y. Chen, D. Y. Zhang, Y. Chen, J. Chen, J. G. Zhu, and D. Q. Xu. 2007. Is photosynthetic acclimation to free-air CO2 enrichment (FACE) related to a strong competition for the assimilatory power between carbon assimilation and nitrogen assimilation in rice leaf? Photosynthetica 45:85–91. doi:10.1007/s11099-007-0013-5.
  • Zhang, J. T., Y. P. Liu, X. H. Li, X. G. Liang, L. L. Zhou, and S. L. Zhou. 2013. Dynamic responses of nitrogen accumulation and remobilization in Summer Maize organs to nitrogen fertilizer. Acta Agronomica Sinica 39:506–14. doi:10.3724/SP.J.1006.2013.00506.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.