115
Views
0
CrossRef citations to date
0
Altmetric
Articles

Phytotoxic Effects of Residual Glufosinate on the Nitrogen Assimilation of Transplanted Rapeseed Seedlings

, &
Pages 1370-1385 | Received 31 Dec 2018, Accepted 29 Apr 2019, Published online: 19 May 2019

References

  • Awan, T. H., P. C. S. Cruz, and B. S. Chauhan. 2016. Effect of pre-emergence herbicides and timing of soil saturation on the control of six major rice weeds and their phytotoxic effects on rice seedlings. Crop Protection 83:37–47. doi:10.1016/j.cropro.2016.01.013.
  • Bell, A. M., and N. C. Duke. 2005. Effects of photosystem II inhibiting herbicides on mangroves-preliminary toxicology trials. Marine Pollution Bulletin 51:297–307. doi:10.1016/j.marpolbul.2004.10.051.
  • Beriault, J. N., G. P. Horsman, and M. D. Devine. 1999. Phloem transport of D,L-glufosinate and acetyl-L-glufosinate in glufosinate-resistant and-susceptible Brassica napus. Plant Physiology 121:619–28. doi:10.1104/pp.121.2.619.
  • Boutin, C., N. Elmegaard, and C. Kjaer. 2004. Toxicity testing of fifteen non-crop plant species with six herbicides in a greenhouse experiment: Implications for risk assessment. Ecotoxicology 13:349–69. doi:10.1023/B:ECTX.0000033092.82507.f3.
  • Britto, D. T., and H. J. Kronzucker. 2002. NH4+ toxicity in higher plants: A critical review. Journal of Plant Physiology 159:567–84. doi:10.1078/0176-1617-0774.
  • Carpenter, D., C. Boutin, and J. E. Allison. 2013. Effects of chlorimuron ethyl on terrestrial and wetland plants: Levels of and time to recovery following sublethal exposure. Environmental Pollution 172:275–82. doi:10.1016/j.envpol.2012.09.007.
  • Daniel-Vedele, F., A. Krapp, and W. Kaiser. 2010. Cellular biology of nitrogen metabolism and signaling. In Cell biology of metals and nutrients, ed. R. Hell and R. R. Mendel, 145–72. Berlin, Heidelberg: Springer.
  • Derksen, D. A., R. L. Anderson, R. E. Blackshaw, and B. Maxwell. 2002. Weed dynamics and management strategies for cropping systems in the Northern Great Plains. Agronomy Journal 94:174–85. doi:10.2134/agronj2002.1740.
  • Donohue, K. 2009. Completing the cycle: Maternal effects as the missing link in plant life histories. Philosophical Transactions of the Royal Society B: Biological Sciences 364:1059–74. doi:10.1098/rstb.2008.0291.
  • Everman, W. J., C. R. Mayhew, J. D. Burton, A. C. York, and J. W. Wilcut. 2009. Absorption, translocation, and metabolism of 14C-glufosinate in glufosinate-resistant corn, goosegrass (Eleusine indica), large crabgrass (Digitaria sanguinalis), and sicklepod (Senna obtusifolia). Weed Science 57:1–5. doi:10.1614/WS-08-089.1.
  • Gaba, S., R. Perronne, G. Fried, A. Gardarin, F. Bretagnolle, L. Biju-Duval, N. Colbach, S. Cordeau, M. Fermandez-Aparicio, C. Gauvrit, et al. 2017. Response and effect traits of arable weeds in agro-ecosystems: A review of current knowledge. Weed Research 57:123–47. doi:10.1111/wre.12245.
  • Gianessi, L. P. 2013. The increasing importance of herbicides in worldwide crop production. Pest Management Science 69:1099–105. doi:10.1002/ps.2013.69.issue-10.
  • Goltsev, V., T. Genkov, M. Lexa, and I. Ivanova. 2001. Effect of benzyladenine, 4-PU-30 and thidiazuron on millisecond delayed and prompt chlorophyll fluorescence of Dianthus caryophyllus L. axillary buds cultured in vitro. Scientia horticulturae 89:41–54. doi:10.1016/S0304-4238(00)00220-X.
  • Green, J. M. 2014. Current state of herbicides in herbicide-resistant crops. Pest Management Science 70:1351–57. doi:10.1002/ps.2014.70.issue-9.
  • Gregory, J. S., E. H. Stephen, and M. W. Loyd. 1997. Absorption and translocation of glufosinate on four weed species. Weed Science 45:378–81.
  • Hao, Z., J. Cang, and Z. Xu. 2004. Plant physiology experiment. Harbin, China: Harbin Institute of Technology Press.
  • Hoerlein, G. 1994. Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. Review Environment Contamination and Toxicology 138:73–145.
  • Horowitz, M. 1976. Application of bioassay techniques to herbicide investigations. Weed Research 16:209–215.
  • Jalaludin, A., Q. Yu, P. Zoellner, R. Beffac, and S. B. Powlesa. 2017. Characterisation of glufosinate resistance mechanisms in Eleusine indica. Pest Management Science 73:1091–100. doi:10.1002/ps.2017.73.issue-6.
  • Kearney, P. C., and D. D. Kaufman. 1988. Herbicides: Chemistry, degradation and mode of action. New York, USA, and Basel, Switzerland: Marcel Dekker Inc.
  • Khaliq, A., and A. Matloob. 2012. Germination and growth response of rice and weeds to herbicides under aerobic conditions. International Journal of Agricultural and Biological 14:775–80.
  • Kim, D. S., E. J. P. Marshall, J. C. Caseley, and P. Brain. 2006. Modelling interactions between herbicide dose and multiple weed species interference in crop–Weed competition. Weed Research 46:175–84. doi:10.1111/wre.2006.46.issue-2.
  • Kishore, G. M., and D. M. Shah. 1988. Amino acid biosynthesis inhibitors as herbicides. Annual Review of Biochemistry 51:627. doi:10.1146/annurev.bi.57.070188.003211.
  • Kronzucker, H. J., M. Y. Siddiqi, and A. D. M. Glass. 1996. Kinetics of NH4+ influx in spruce. Plant Physiology 109:319–26. doi:10.1104/pp.109.1.319.
  • Kusano, M., A. Fukushima, H. Redestig, and K. Saito. 2011. Metabolomic approaches toward understanding nitrogen metabolism in plants. Journal of Experimental Botany 62:1439–53. doi:10.1093/jxb/err025.
  • Lea, P. J., and R. J. Ireland. 1999. Nitrogen metabolism in higher plants. In Plant amino acids, ed. B. K. Singh, 1–48. Princeton, New Jersey, USA: American Cyanamid Company.
  • Lea, P. J., K. W. Joy, J. L. Ramos, and M. G. Guerrero. 1984. The action of the 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants. Phytochemistry 23:1–6. doi:10.1016/0031-9422(84)83066-6.
  • Lea, P. J., and S. M. Ridley. 1989. Glutamine synthetase and its inhibition. Herbicides and plant metabolism. In Society for experimental biology seminar series 38, ed. A. D. Dodge, 137–70. Cambridge, UK: Cambridge University Press.
  • Marschner, P. 2012. Marschner’s Mineral Nutrition of Higher Plants, 135–51. London, Waltham, MA: Academic Press.
  • Masclaux-Daubresse, C., F. Daniel-Vedele, J. Dechorgnat, F. Chardon, L. Gaufichon, and A. Suzuki. 2010. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany 105:1141–57. doi:10.1093/aob/mcq046.
  • Mersey, B. G., J. C. Hall, D. M. Anderson, and C. J. Swanton. 1990. Factors affecting the herbicidal activity of glufosinate-ammonium: Absorption, translocation, and metabolism in barley and green foxtail. Pesticide Biochemistry and Physiology 37:90–98. doi:10.1016/0048-3575(90)90112-F.
  • Miflin, B. J., and P. J. Lea. 1980. Ammonia assimilation. Biochemical Plants 5:169–202.
  • Oaks, A., and B. Hirel. 1985. Nitrogen metabolism in roots. Annual Review of Plant Physiology 36:345–65. doi:10.1146/annurev.pp.36.060185.002021.
  • Oerke, E. C. 2006. Crop losses to pests. Journal of Agricultural Science 144:31–43. doi:10.1017/S0021859605005708.
  • Organisation for Economic Co-operation and Development (OECD). 2006. Terrestrial plants test: seedling emergence and seedling growth test (No. 208) and vegetative vigour test (No. 227). OECD Guidelines for Testing Chemicals, Paris, France.
  • Pestemer, W., L. Stalder, and B. Eckert. 1980. Availability to plants of herbicide residues in soil. Part II: Data for use in vegetable crop rotations. Weed Research 20:349–53. doi:10.1111/wre.1980.20.issue-6.
  • Pimentel, D. 2005. Environmental and economic costs of the application of pesticides primarily in the united State. Environment, Development and Sustainability 7:229–52. doi:10.1007/s10668-005-7314-2.
  • Pline, W. A., J. Wu, and K. K. Hatzios. 1999. Absorption, translocation, and metabolism of glufosinate in five weed species as influenced by ammonium sulfate and pelargonic acid. Weed Science 47:636–43.
  • Qi, Y., B. Yan, G. Fu, X. Guan, L. Du, and J. Li. 2017. Germination of seeds and seedling growth of Amaranthus retroflexus L. following sub-lethal exposure of parent plants to herbicides. Scientific Reports 7:157. doi:10.1038/s41598-017-00153-4.
  • Rhodes, D., L. Deal, P. Haworth, G. C. Jamieson, C. C. Reuter, and M. C. Ericson. 1986. Amino acid metabolism of Lemna minor L. I. Responses to methionine sulfoximine. Plant Physiology 82:1057–62.
  • Riaz, M., M. Jamil, and T. Z. Mahmood. 2007. Yield and yield components of maize as affected by various weed control methods under rain-fed conditions of Pakistan. International Journal of Agricultural and Biological 9:152–55.
  • Ridley, S. M., and S. F. McNally. 1985. Effects of phosphinothricin on the isoenzymes of glutamine synthetase isolated from plant species which exhibit varying degrees of susceptibility to herbicide. Plant Science 39:31–36. doi:10.1016/0168-9452(85)90188-8.
  • Rotches-Ribalta, R., C. Boutin, J. M. Blanco-Moreno, D. Carpenter, and F. X. Sans. 2015. Herbicide impact on the growth and reproduction of characteristic and rare arable weeds of winter cereal fields. Ecotoxicology 24:991–1003. doi:10.1007/s10646-015-1440-x.
  • Ruhland, M., G. Engelhardt, and K. Pawlizki. 2004. Distribution and metabolism of D/L-, L- and D-glufosinate in transgenic, glufosinate-tolerant crops of maize (Zea mays L. ssp. mays) and oilseed rape (Brassica napus L. var. napus). Pest Management Science 60:691–96. doi:10.1002/ps.857.
  • Sadler, C., B. Schroll, V. Zeisler, F. Waßmann, R. Franke, and L. Schreiber. 2016. Wax and cutin mutants of Arabidopsis: Quantitative characterization of the cuticular transport barrier in relation to chemical composition. Biochimica et Biophysica Acta 1861:1336–44. doi:10.1016/j.bbalip.2016.03.002.
  • Schneidereit, J., R. E. Hausler, G. Fiene, W. M. Kaiser, and A. P. M. Weber. 2006. Antisense repression reveals a crucial role of the plastidic 2-oxoglutarate/malate translocator DiT1 at the interface between carbon and nitrogen metabolism. The Plant Journal 45:206–24. doi:10.1111/j.1365-313X.2005.02594.x.
  • Schwerdtle, F., H. Bieringer, and M. Finke. 1981. Hoe 39866—Ein neues nicht-selektives Blattherbizid. Z. Pflanzerkr. Pflanzenschutz 9:431–40.
  • Skopelitis, D. S., N. V. Paranychianakis, K. A. Paschalidis, E. D. Pliakonis, I. D. Delis, D. I. Yakoumakis, A. Kouvarakis, A. K. Papadakis, E. G. Stephanou, and K. A. RoubelakisAngelakis. 2006. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. The Plant Cell 18:2767–81. doi:10.1105/tpc.105.038323.
  • Smith, A. E. 1988. Persistence and transformation of the herbicide [14C] glufosinate-ammonium in prairie soils under laboratory conditions. Journal of Agricultural and Food Chemistry 36:393–97. doi:10.1021/jf00080a036.
  • Smith, A. E., and M. B. Belyk. 1989. Field persistence studies with the herbicide glufosinate-ammonium in Saskatchewan soils. Journal of Environment Quality 18:475–79. doi:10.2134/jeq1989.00472425001800040013x.
  • Tang, Z. C. 1999. Guide to modern plant Physiology Experiments. Beijing, China: Science Press.
  • United States Environmental Protection Agency (USEPA). 2012. Ecological effects test guidelines: vegetative vigor OCSPP 850.4150, EPA 712-C-011; early seedling growth toxicity test OCSPP 850.4230, EPA 712-C-010; seedling emergence and seedling growth OCSPP 850.4100, EPA 712-C-012. Washington DC, USA.
  • Varanasi, A., P. V. V. Prasad, and M. Jugulam. 2016. Impact of climate change factors on weeds and herbicide efficacy. Advanced Agronomy 135:107–46. doi:10.1016/bs.agron.2015.09.002.
  • Vítek, P., K. Novotná, P. Hodaňová, B. Rapantová, and K. Klem. 2017. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 170:234–41. doi:10.1016/j.saa.2016.07.025.
  • Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39:971–74. doi:10.1021/ac60252a045.
  • Wendler, C., A. Putzer, and A. Wild. 1992. Effect of glufosinate (phosphinothricin) and inhibitors of photorespiration on photosynthesis and ribulose-1,5-bisphosphate carboxylase activity. Journal of Plant Physiology 139:666–71. doi:10.1016/S0176-1617(11)81708-6.
  • Wibawa, W., R. B. Mohamad, A. B. Puteh, D. Omar, A. S. Juraimi, and S. A. Abdullah. 2009. Residual phytotoxicity effects of paraquat, glyphosate and glufosinate-ammonium herbicides in soils from field-treated plots. International Journal of Agricultural and Biology 11:214–16.
  • Wild, A., and R. Manderscheid. 1984. The effect of phosphinothricin on the assimilation of ammonia in plants. Zeitschrift für Naturforschung C 39:500. doi:10.1515/znc-1984-0539.
  • Xie, J., X. Bai, Y. Li, C. Sun, H. Qian, and Z. Fu. 2014. The effect of glufosinate on nitrogen assimilation at the physiological, biochemical and molecular levels in Phaeodactylum tricornutum. Ecotoxicology 23:1430–38. doi:10.1007/s10646-014-1285-8.
  • Zhang, X. Z. 1992. Crop physiology research methods. Beijing, China: China Agricultural Press.
  • Zoltán, Á., R. Mihály, M. Cserháti, É. Kótai, and J. Pauk. 2012. The effect of high concentrations of glufosinate ammonium on the yield components of transgenic spring wheat (Triticum aestivum L.) constitutively expressing the bar gene. Science World Journal 657945. doi:10.1100/2012/657945.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.