143
Views
3
CrossRef citations to date
0
Altmetric
Articles

Potato Tuber Yield and Plant Morphological Descriptors as Affected by Nitrogen Application

, &
Pages 1897-1906 | Received 06 May 2019, Accepted 27 Jun 2019, Published online: 05 Aug 2019

References

  • Barcelos, D. M., A. Garcia, and V. A. Maciel. 2007. Análise de crescimento da cultura da batata submetida ao parcelamento da adubação nitrogenada em cobertura, em um Latossolo Vermelho-Amarelo. Ciência E Agrotecnologia 31:21–27. doi:10.1590/S1413-70542007000100003.
  • Bélanger, G., J. R. Walsh, J. E. Richards, P. H. Milbum, and N. Ziadi. 2001. Tuber growth and biomass partitioning of two potato cultivars grown under different n fertilization rates with and without irrigation. American Journal of Potato Research 78:109–17. doi:10.1007/BF02874766.
  • Bruns, S., and K. Caesar. 1990. Shoot development and tuber yield of several potato cultivars under high salt concentrations at different Stages of development. Potato Research 33:23–32. doi:10.1007/BF02358127.
  • Calori, A. H., T. L. Factor, J. C. Feltran, E. Y. Watanabe, C. C. Moraes, and L. F. V. Purquerio. 2017. Electrical conductivity of the nutrient solution and plant density in aeroponic production of seed potato under tropical conditions (winter/spring). Bragantia 76 (1):23–32. doi:10.1590/1678-4499.022.
  • Chang, D. C., C. S. Park, S. Y. Kim, and Y. B. Lee. 2012. Growth and tuberization of hydroponically grown potatoes. Potato Research 55 (1):69–81. doi:10.1007/s11540-012-9208-7.
  • Davenport, J. R., P. H. Milburn, C. J. Rosen, and R. E. Thorton. 2005. Environmental impacts of potatoes nutrient requirements. American Journal of Potato Research 82 (4):321–28. doi:10.1007/BF02871962.
  • Dutt, S., A. S. Manjul, P. Raigond, B. Singh, S. Siddappa, V. Bhardwaj, G. K. Prashant, V. U. Patil, and H. B. Kardile. 2017. Key players associated with tuberization in potato: Potential candidates for genetic engineering. Critical Reviews in Biotechnology 37 (7):942–57. doi:10.1080/07388551.2016.
  • Fontes, P. C. R., H. Braun, M. C. C. Silva, F. S. Coelho, P. R. Cecon, and F. L. Partelli. 2016. Tuber yield prognosis model and agronomic nitrogen use efficiency of potato cultivars. Australian Journal of Crop Science 10 (7):933–39. doi:10.21475/ajcs.2016.10.07.p7404.
  • Forde, B. G. 2014. Nitrogen signalling pathways shaping root system architecture: An update. Current Opinion Plant Biology 21 (1):30–36. doi:10.1016/j.pbi.2014.06.004.
  • Heuer, B., and A. Nadler. 1998. Physiological response of potato plants to soil salinity and water deficit. Plant Science 137 (1):43–51. doi:10.1016/S0168-9452(98)00133-2.
  • Hodge, A. 2009. Root decisions. Plant, Cell & Environment 32 (1):628–40. doi:10.1111/j.1365-3040.2008.01891.x.
  • Joshi, M., E. Fogelman, E. Belausov, and I. Ginzberg. 2016. Potato root system development and factors that determine its architecture. Journal of Plant Physiology 205 (1):113–23. doi:10.1016/j.jplph.2016.08.014.
  • Kawakami, J. 2015. Redução da adubação e doses e parcelamento de nitrogênio no crescimento e produtividade de batata. Horticultura Brasileira 33 (1):168–73. doi:10.1590/S0102-053620150000200006.
  • Kleinkopf, G. E., D. T. Westermann, and R. B. Dwelle. 1981. Dry matter production and nitrogen utilization by six potato cultivars. Agronomy Journal 73 (5):799–802. doi:10.2134/agronj1981.00021962007300050013x.
  • Luz, J. M. Q., A. A. Queiroz, and R. C. Oliveira. 2014. Teor crítico foliar de nitrogênio na batata Asterix em função de doses de nitrogênio. Horticultura Brasileira 32 (2):225–29. doi:10.1590/S0102-05362014000200019.
  • Nadler, A., and B. Heuer. 1995. Effect of saline irrigation and water deficit on tuber quality. Potato Research 38 (1):119–23. doi:10.1007/BF02358078.
  • Oliveira, C. A. S. 2000. Potato crop growth as affected by nitrogen and plant density. Pesquisa Agropecuária Brasileira 35 (5):939–50. doi:10.1590/S0100-204X2000000500011.
  • Oliveira, J., H. Brown, A. Gash, and D. Moot. 2016. An explanation of yield differences in three potato cultivars. Agronomy Journal 108 (4):1–13. doi:10.2134/agronj2015.0486.
  • Oparka, K. J., H. V. Davies, and D. A. M. Prior. 1987. The influence of applied N on export and partitioning of current assimilate by field-grown potato plants. Annals of Botany 59 (3):311–23. doi:10.1093/oxfordjournals.aob.a087320.
  • Osaki, M., J. Shirai, T. Shinano, and T. Tadano. 1995. Effects of ammonium and nitrate assimilation on the growth and tuber swelling of potato plants. Soil Science & Plant Nutrition 41 (4):709–19. doi:10.1080/00380768.1995.10417021.
  • Sattelmacher, B., F. Klotz, and H. Marschner. 1990. Influence of the nitrogen level on root growth and morphology of two potato varieties differing in nitrogen acquisition. Plant and Soil 123 (2):131–37. doi:10.1007/BF00011258.
  • Schum, A., and G. Jansen. 2014. In vitro method for early evaluation of nitrogen use efficiency associated traits in potato. Journal of Applied Botany and Food Quality 87 (1):256–64. doi:10.5073/JABFQ.2014.087.036.
  • Sevcikova, H., P. Maskova, D. Tarkowska, T. Masek, and H. Lipavska. 2017. Carbohydrates and gibberellins relationship in potato tuberization. Journal of Plant Physiology 214 (1):53–63. doi:10.1016/j.jplph.2017.04.003.
  • Shannon, M. C., and C. M. Grieve. 1999. Tolerance of vegetable crops to salinity. Scientia Horticulturae 78 (1–4):5–3. doi:10.1016/S0304-4238(98)00189-7.
  • Silva, G. O., A. S. Pereira, F. A. Suinaga, and R. Ponijaleki. 2014. Adubação nitrogenada no rendimento da cultivar de batata BRS Ana. Horticultura Brasileira 32 (1):107–10. doi:10.1590/S0102-05362014000100018.
  • Villordon, A. Q., I. Ginzberg, and N. Firon. 2014. Root architecture and root and tuber crop productivity. Trends in Plant Science 19 (7):419–25. doi:10.1016/j.tplants.2014.02.002.
  • Wagg, M., and G. Sheehan. 2009. Saltland solution: Options for saltland restoration. Canberra: Land & Water Australia.
  • Wishart, J., T. S. George, L. K. Brown, G. Ramsay, J. E. Bradshaw, P. J. White, and P. J. Gregory. 2012. Measuring variation in potato roots in both field and glasshouse: The search for useful yield predictors and a simple screen for root traits. Plant and Soil 368 (1–2):231–49. doi:10.1007/s11104-012-1483-1.
  • Zhou, Z., F. Plauborg, K. Kristensen, and M. N. Andersen. 2017. Dry matter production, radiation interception and radiation use efficiency of potato in response to temperature and nitrogen application regimes. Agricultural and Forest Meteorology 232 (1):595–605. doi:10.1016/j.agrformet.2016.10.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.