276
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Changes in phosphorus fractions in three tropical soils amended with corn cob and rice husk biochars

, , &
Pages 1331-1340 | Received 20 Dec 2019, Accepted 09 Mar 2020, Published online: 18 Jun 2020

References

  • Abekoe, M. K., and K. L. Sahrawat. 2001. Phosphate retention and extractability in soils of the humid zone in West Africa. Geoderma 102 (1–2):175–87. doi:10.1016/S0016-7061(00)00110-5.
  • Abekoe, M. K., and K. L. Sahrawat. 2003. Long-term cropping effect on phosphorus fractions in an ultisol of the humid forest zone in West Africa. Communications in Soil Science and Plant Analysis 34 (3–4):427–37. doi:10.1081/CSS-120017830.
  • Aon, M., M. Khalid, Z. A. Zahir, and R. Ahmad. 2015. Low temperature produced citrus peel and greenwaste biochar improved maize growth and nutrient uptake, and chemical properties of calcareous soil. Pakistan Journal of Agricultural Science 52:627–36.
  • Asomaning, S. K., M. K. Abekoe, G. N. N. Dowuona, O. K. Borggaard, J. A. Kristensen, and H. Breuning-Madsen. 2015. Sustainable long-term intensive application of manure to sandy soils without phosphorus leaching: A case study from Ghana. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 65 (8):747–54. doi:10.1080/09064710.2015.1058413.
  • Barthes, B., B. Barthès, A. Azontonde, E. Blanchart, C. Girardin, C. Villenave, S. Lesaint, R. Oliver, and C. Feller. 2004. Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an Ultisol under maize cultivation in southern Benin. Soil Use and Management 20 (2):231–39. doi:10.1079/SUM2004235.
  • Borggaard, O. K. 2002. Soil chemistry in a pedological context. 6th ed. Frederisksberg: DSR Forlag.
  • Bornø, M. L., J. O. Eduah, D. S. Muller-Stover, and F. Liu. 2018. Effect of different biochars on phosphorus (P) dynamics in the rhizosphere of Zea mays L. (maize). Plant and Soil 431 (1–2):257–72. doi:10.1007/s11104-018-3762-y.
  • Delgado, A., and J. Torrent. 2000. Phosphorus forms and desorption patterns in heavily fertilized calcareous and limed acid soils. Soil Science Society of America Journal 64 (6):2031–37. doi:10.2136/sssaj2000.6462031x.
  • Duku, M. H., S. Gu, and E. B. Hagan. 2011. Biochar production potential in Ghana—A review. Renewable and Sustainable Energy Reviews 15 (8):3539–51. doi:10.1016/j.rser.2011.05.010.
  • Eduah, J. O., E. K. Nartey, M. K. Abekoe, H. Breuning-Madsen, and M. N. Andersen. 2019. Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures. Geoderma 341:10–17. doi:10.1016/j.geoderma.2019.01.016.
  • Farrell, M., L. M. MacDonald, G. Butler, I. Chirino-Valle, and L. M. Condron. 2014. Biochar and fertiliser applications influence phosphorus fractionation and wheat yield. Biology and Fertility of Soils 50 (1):169–78. doi:10.1007/s00374-013-0845-z.
  • Gaskin, J., C. Steiner, K. Harris, K. Das, and B. Bibens. 2008. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE 51 (6):2061–69. doi:10.13031/2013.25409.
  • Gérard, F. 2016. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils — A myth revisited. A Myth Revisited. Geoderma 262:213–26. doi:10.1016/j.geoderma.2015.08.036.
  • Gul, S., J. K. Whalen, B. W. Thomas, V. Sachdeva, and H. Deng. 2015. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment 206:46–59. doi:10.1016/j.agee.2015.03.015.
  • Hedley, M. J., J. W. B. Stewart, and B. S. Chauhan. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal 46 (5):970–76. doi:10.2136/sssaj1982.03615995004600050017x.
  • John, M. K. 1970. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Science 109 (4):214–20. doi:10.1097/00010694-197004000-00002.
  • Lehmann, J. 2007. Bio-energy in the Black. Frontiers in Ecology and the Environment 5 (7):381–87. doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.
  • Lehmann, J., J. Gaunt, and M. Rondon. 2006. Bio-char Sequestration in Terrestrial Ecosystems – A Review. Mitigation and Adaptation Strategies for Global Change 11 (2):403–27. doi:10.1007/s11027-005-9006-5.
  • Mukherjee, A., and A. R. Zimmerman. 2013. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 193-194:122–30. doi:10.1016/j.geoderma.2012.10.002.
  • Pierzynski, G. M., J. T. Sims, and G. Vance. 1994. Soils and Environmental Quality. Boca Raton, FL, USA: Lewis Publishers, CRC Press.
  • Schneider, F., and S. B. Haderlein. 2016. Potential effects of biochar on the availability of phosphorus — Mechanistic insights. Geoderma 277:83–90. doi:10.1016/j.geoderma.2016.05.007.
  • Schoumans, O. F., and W. J. Chardon. 2015. Phosphate saturation degree and accumulation of phosphate in various soil types in The Netherlands. Geoderma 237-238:325–35. doi:10.1016/j.geoderma.2014.08.015.
  • Shepherd, J. G., S. Joseph, S. P. Sohi, and K. V. Heal. 2017. Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties. Chemosphere 179:57–74. doi:10.1016/j.chemosphere.2017.02.123.
  • Simard, R. R., D. Cluis, G. Gangbazo, and S. Beauchemin. 1995. Phosphorus status of forest and agricultural soils from a watershed of high animal density. Journal of Environmental Quality 24 (5):1010–17. doi:10.2134/jeq1995.00472425002400050033x.
  • Sohi, S. P., E. Krull, E. Lopez-Capel, and R. Bol. 2010. Chapter 2–A review of biochar and its use and function in soil. Advances in Agronomy 105:47–82.
  • Tiessen, H., and J. O. Moir. 2008. Characterisation of available P by sequential extraction. In Soil sampling and methods of analysis, ed. M. R. Carter and E. G. Gregorich, 293–306. 2nd ed. Boca Raton: CRC.
  • Uchimiya, M., and S. Hiradate. 2014. Pyrolysis temperature-dependent changes in dissolved phosphorus speciation of plant and manure biochars. Journal of Agriculture and Food Chemistry 62 (8):1802–09. doi:10.1021/jf4053385.
  • Usman, A. R. A., A. Abduljabbar, M. Vithanage, Y. S. Ok, M. Ahmad, M. Ahmad, J. Elfaki, S. Abdulazeem, and M. I. Al-Wabel. 2015. Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry. Journal of Analytical and Applied Pyrolysis 115:392–400. doi:10.1016/j.jaap.2015.08.016.
  • Wang, T., M. Camps-Arbestain, and M. Hedley. 2014. The fate of phosphorus of ash-rich biochars in a soil-plant system. Plant and Soil 375 (1–2):61–74. doi:10.1007/s11104-013-1938-z.
  • Xu, G., Y. Zhang, H. Shao, and J. Sun. 2016. Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and 31P NMR analysis. Science of the Total Environment 569-570:65–72. doi:10.1016/j.scitotenv.2016.06.081.
  • Zhang, H., C. Chen, E. M. Gray, S. E. Boyd, H. Yang, and D. Zhang. 2016. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus. Geoderma 276:1–6. doi:10.1016/j.geoderma.2016.04.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.