402
Views
17
CrossRef citations to date
0
Altmetric
Articles

The Effect of Humic Acid and Biochar on Growth and Nutrients Uptake of Calendula (Calendula officinalis L.)

, , , &
Pages 1658-1669 | Received 20 Jan 2020, Accepted 08 Jun 2020, Published online: 12 Jul 2020

References

  • Abbas, T., M. Rizwan, S. Ali, M. Zia-ur-Rehman, M. F. Qayyum, F. Abbas, F. Hannan, J. Rinklebe, and Y. S. Ok. 2017. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology and Environmental Safety 140:37–47. doi:10.1016/j.ecoenv.2017.02.028.
  • Aboukila, E. F., I. N. Nassar, M. Rashad, M. Hafez, and J. B. Norton. 2018. Reclamation of calcareous soil and improvement of squash growth using brewers’ spent grain and compost. Journal of the Saudi Society of Agricultural Sciences 17:390–97. doi:10.1016/j.jssas.2016.09.005.
  • Adani, F., P. Genevini, P. Zaccheo, and G. Zocchi. 1998. The effect of humic acid on tomato plant growth and mineral nutrition. Journal of Plant Nutrition 21:561–75. doi:10.1080/01904169809365424.
  • Asai, H., B. K. Samson, H. M. Stephan, K. Songyikhangsuthor, K. Homma, Y. Kiyono, Y. Inoue, T. Shiraiwa, and T. Horie. 2009. Biochar amendment techniques for upland rice production in Northern Laos. 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research 111:81–84. doi:10.1016/j.fcr.2008.10.008.
  • ASTM. 2007. ASTM book of standards volume 15.01: Refractories, activated carbon; advanced ceramics. West Conshohocken, PA: American Society for Testing Materials.
  • Baldock, J. A., and R. J. Smernik. 2002. Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood. Organic Geochemistry 33:1093–109. doi:10.1016/S0146-6380(02)00062-1.
  • Baldotto, M. A., and L. E. B. Baldotto. 2013. Gladiolus development in response to bulb treatment with different concentrations of humic acids. Revista Ceres 60:138–42. doi:10.1590/S0034-737X2013000100020.
  • Bhanooduth, L. 2006. The effect of sugar industry wastes on extractable heavy metals in soil. Soil care and quality soil management. The 18th world congress of soil science, 136–39. July 15.Philadelphia, Pennsylvania, USA.
  • Borchard, N., K. Prost, T. Kautz, A. Möller, and J. Siemens. 2012. Sorption of copper (II) and sulphate to different biochars before and after composting with farmyard manure. European Journal of Soil Science 63:399–409. doi:10.1111/j.1365-2389.2012.01446.x.
  • Bradl, H. B. 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science 277:1–18. doi:10.1016/j.jcis.2004.04.005.
  • Canellas, L. P., F. L. Olivares, A. L. Okorokova-Façanha, and A. R. Façanha. 2002. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane HC-ATPase activity in maize roots. Plant Physiology 130:1951–57. doi:10.1104/pp.007088.
  • Clarke, G. M., and R. E. Kempson. 1997. Introduction to the design and analysis of experiments Arnold. 1st ed. London, UK: A Member of the Holder Headline Group.
  • Cottenie, A. 1980. Soil and plant testing and analysis as a basis of fertilizer recommendations. 4th ed. FAO Soils Bulletin.Rome.
  • DeLuca, T. H., M. D. MacKenzie, and M. J. Gundale. 2009. Biochar effects on soil nutrient transformations. In Biochar for environmental management, ed. J. Lehman and S. Joseph, 251‒270. London, UK: Earthscan.
  • Ertani, A., O. Francioso, V. Tugnoli, V. Righi, and S. Nardi. 2011. Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. Journal of Agricultural and Food Chemistry 59:11940–48. doi:10.1021/jf202473e.
  • Gao, S., and H. D. Thomas. 2018. Wood biochar impacts soil phosphorus dynamics and microbial communities in organically-managed croplands. Soil Biology & Biochemistry 126:144–50. doi:10.1016/j.soilbio.2018.09.002.
  • Gaskin, J. W., R. A. Speir, K. Harris, K. C. Das, R. D. Lee, L. A. Morris, and D. S. Fisher. 2010. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agronomy Journal 102:623–33. doi:10.2134/agronj2009.0083.
  • Gee, G. W. and J. W. Bauder. 1986. Particle size analysis, hydrometer method. In Methods of soil analysis, part II, ed. A. Klute,383–411. Madison, WI: ASA.
  • Glaser, B., and J. J. Birk. 2012. State of the scientific knowledge on properties and genesis of anthropogenic dark Earths in Central Amazonia (terra preta de Índio). Geochimica et Cosmochimica Acta 82:39–51. doi:10.1016/j.gca.2010.11.029.
  • Harper, S. M., G. L. Kerven, D. G. Edwards, and Z. Ostatek-Boczynski. 2000. Characterization of fulvic and humic acids from leaves of Eucalyptus camaldulensis and from decomposed hay. Soil Biology & Biochemistry 32:1331–36. doi:10.1016/S0038-0717(00)00021-3.
  • Hashem, A., A. Kumar, A. M. Al-Dbass, A. A. Alqarawi, A. F. Al-Arjani, G. Singh, M. Farooq, and E. F. Abd_Allah. 2019. Arbuscular mycorrhizal fungi and biochar improve drought tolerance in chickpea. Saudi Journal of Biological Sciences 26:614–24. doi:10.1016/j.sjbs.2018.11.005.
  • Kavitha, B., P. V. L. Reddy, B. Kim, S. S. Lee, S. K. Pandey, and K. Kim. 2018. Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management 227:146–54. doi:10.1016/j.jenvman.2018.08.082.
  • Khorasaninejad, S., A. Alizadeh Ahmadabadi, and K. Hemmati. 2018. The effect of humic acid on leaf physiological and phytochemical properties of Echinacea purpurea L. under water deficit stress. Scientia Horticulturae 239:314–23. doi:10.1016/j.scienta.2018.03.015.
  • Kreij, C., and H. Basar. 1995. Effect of humic substances in nutrient film technique on nutrient uptake. Journal of Plant Nutrition 18:793–802. doi:10.1080/01904169509364938.
  • Lehmann, J., J. Gaunt, and M. Rondon. 2006. Biochar sequestration in terrestrial ecosystems – A review. Mitigation and Adaption Strategies for Global Change 11:403–27. doi:10.1007/s11027-005-9006-5.
  • Lehmann, J., and S. Joseph. 2009. Biochar for environmental management. In Biochar for environmental management: Science and technology, ed. J. Lehmann and S. Joseph, 405. 3rd ed. London: Earthscan.
  • Li, Y., N. He, J. Hou, L. Xu, C. Liu, J. Zhang, Q. Wang, X. Zhang, and X. Wu. 2018. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and the Environment 6:64. doi:10.3389/fevo.2018.00064.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42:421–28. doi:10.2136/sssaj1978.03615995004200030009x.
  • Lobartini, J. C., G. A. Orioli, and K. H. Tan. 1997. Characteristics of soil humic acid fractions separated by ultrafiltration. Communications in Soil Science and Plant Analysis 28:787–96. doi:10.1080/00103629709369830.
  • Murphy, J., and J. P. Riley. 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5.
  • Namgay, T., B. Singh, and B. P. Singh. 2010. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays). Australian Journal of Soil Research 48:638–47. doi:10.1071/SR10049.
  • Nardi, S., D. Pizzeghello, A. Muscolo, and A. Vianello. 2002. Physiological effects of humic substances on higher plants. Soil Biology & Biochemistry 34:1527–36. doi:10.1016/S0038-0717(02)00174-8.
  • Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In Methods of soil analysis, part III, ed.. A. Klute. 3rd ed., 961–1010. Madison, WI: ASA.
  • Nelson, R. E. 1982. Carbonate and gypsum. In Methods of soil analysis. Part 2, ed. A. L. Page, D. L. Sparks, P. A. Helmke, & R. H. Loeppert, 2nd ed., 181–97. Madison, WI: American Society of Agronomy.
  • Nikbakht, A., M. Kafi, M. Babalar, Y. P. Xia, A. Luo, and N. Etemadi. 2008. Effect of humic acid on plant growth, nutrient uptake, and postharvest life of gerbera. Journal of Plant Nutrition 31:2155–67. doi:10.1080/01904160802462819.
  • Olsen, S. R., and L. E. Sommers. 1982. Phosphorus. In Methods of soil analysis. Part 2, ed. A. L. Page, D. L. Sparks, P. A. Helmke, & R. H. Loeppert, 2nd ed., 403–30. Madison WI: American Society of Agronomy.
  • Passera, C., L. Nicolao, M. Ferretti, N. Rascio, and R. Ghisi. 1991. Effect of humic substances of enzyme-activities of sulfate assimilation and chloroplast ultrastructure of maize leaves. Photosynthetica 25:39–45.
  • Purakayastha, T. J., T. Bera, D. Bhaduri, B. Sarkar, S. Mandal, P. Wade, S. Kumari, S. Biswas, M. Menon, H. Pathak, et al. 2019. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere 227:345–65. doi:10.1016/j.chemosphere.2019.03.170.
  • Rhodes, J. D. 1996. Salinity: Electrical conductivity and total dissolved solids. In Methods of soil analysis, part III, ed. A. L. Page, D. L. Sparks, P. A. Helmke, & R. H. Loeppert, 3rd ed., 417–436. Madison, WI: ASA.
  • Richards, L. A. 1954. Diagnosis and Improvement of saline and alkali soils. In Agricultural handbook, 60. Soil and Water Conservation Research Branch. Agricultural Research Service. Washington, DC: USDA.
  • Singh, B., B. P. Singh, and A. L. Cowie. 2010. Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research 48:516–25. doi:10.1071/SR10058.
  • Tahir, M. M., M. Khurshid, M. Z. Khan, M. K. Abbasi, and M. H. Kazmi. 2011. Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere 21:124–31. doi:10.1016/S1002-0160(10)60087-2.
  • Tarumingkeng, R. C., and Z. Coto. 2003. Effects of drought stress on growth and yield of soybean. Kisman: Science Philosophy Agricultural University.
  • Tate, R. L. 2000. Soil microbiology. 2nd ed. New York, USA: John Wily and Sons.
  • Thomas, G. W. 1996. Soil pH and soil acidity. In Methods of soil analysis, part III, ed.. A. Klute. 3rd ed., 475–90. Madison, WI: ASA.
  • Trevisan, S., O. Francioso, S. Quaggiotti, and S. Nardi. 2010. Humic substances biological activity at the plant-soil interface from environmental aspects to molecular factors. Plant Signaling & Behavior 5:635–43. doi:10.4161/psb.5.6.11211.
  • Vaccari, F., S. Baronti, E. Lugato, L. Genesio, S. Castaldi, F. Fornasier, and F. Miglietta. 2011. Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy 34:231–38. doi:10.1016/j.eja.2011.01.006.
  • Valdrighi, M. M., A. Pear, M. Agnolucci, S. Frassinetti, D. Lunardi, and G. Vallini. 1996. Effects of compost derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus) soil system: A comparative study. Agriculture, Ecosystems & Environment 58:133–44. doi:10.1016/0167-8809(96)01031-6.
  • Verlinden, G., B. Pycke, J. Mertens, F. Debersaques, K. Verheyen, G. Baert, J. Bries, and G. Haesaert. 2009. Application of humic substances results in consistent increases in crop yield and nutrient uptake. Journal of Plant Nutrition 32:1407–26. doi:10.1080/01904160903092630.
  • Xu, C., and D. I. Leskovar. 2015. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientia Horticulturae 183:39–47. doi:10.1016/j.scienta.2014.12.004.
  • Yu, W., X. Ding, S. Xue, S. Li, X. Liao, and R. Wang. 2013. Effects of organic-matter application on phosphorus adsorption of three soil parent materials. Journal of Soil Science and Plant Nutrition 13:1003–17.
  • Zainul, A., K. Hans-Werner, H. Bernhard, G. Bilquees, and K. M. Ajmal. 2017. Impact of a biochar or a compost-biochar mixture on water relation, nutrient uptake and photosynthesis of Phragmites karka. Pedosphere 30:466–77.
  • Zandonadi, D. B., M. P. Santos, L. S. Caixeta, E. B. Marinho, L. E. P. Peres, and A. R. Façanha. 2016. Plant proton pumps as markers of biostimulant action. Scientia Agricola 73:24–28. doi:10.1590/0103-9016-2015-0076.
  • Zanin, L., N. Tomasi, S. Cesco, Z. Varanini, and R. Pinton. 2019. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Frontiers in Plant Science 10:675. doi:10.3389/fpls.2019.00675.
  • Zhang, X., E. H. Ervin, and R. E. Schmidt. 2003. Plant growth regulators can enhance the recovery of Kentucky bluegrass sod from heat injury. Crop Science 43:952–56. doi:10.2135/cropsci2003.9520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.