126
Views
0
CrossRef citations to date
0
Altmetric
Articles

Stable Isotope (δ13C and δ15N) Signatures and Their Relationship among Soil Enzyme Activities in Indian Semi-arid Agricultural Soils

, , &
Pages 1747-1756 | Received 25 Jan 2020, Accepted 13 May 2020, Published online: 29 Jul 2020

References

  • Agrawal, S., P. Sanyal, M. K. Bera, J. K. Dash, and S. Balakrishnan. 2013. Paleoclimatic, paleovegetational and provenance change in the Ganga plain during the late quaternary. Journal of Earth System Science 122 (4):1141–52. doi:10.1007/s12040-013-0332-9.
  • Agrawal, S., P. Srivastava, N. K. Meena, S. K. Rai, R. Bhushan, D. K. Misra, and A. K. Gupta. 2015. Stable (δ13C and δ15N) isotopes and magnetic susceptibility record of late Holocene climate change from a lake profile of the northeast Himalaya. Journal of the Geological Society of India 86 (6):696–705. doi:10.1007/s12594-015-0362-9.
  • Awiti, A. O., M. G. Walsh, and J. Kinyamario. 2008. Dynamics of topsoil carbon and nitrogen along a tropical forest–cropland chronosequence: Evidence from stable isotope analysis and spectroscopy. Agriculture, Ecosystems & Environment 127 (3–4):265–72. doi:10.1016/j.agee.2008.04.012.
  • Bashour, I. I., and A. H. Sayegh. 2007. Methods of analysis for soils of arid and semi-arid regions. Rome, Italy: FAO.
  • Bhat, M. I., and M. A. Bhat. 2010. Applications of stable and radioactive isotopes in soil science. Current Science. 98: 1458–71.
  • Busari, M. A., F. K. Salako, and C. Tuniz. 2016. Stable isotope technique in the evaluation of tillage and fertilizer effects on soil carbon and nitrogen sequestration and water use efficiency. European Journal of Agronomy 73:98–106. doi:10.1016/j.eja.2015.11.002.
  • Chinnadurai, C., G. Gopalaswamy, and D. Balachandar. 2014. Impact of long-term organic and inorganic nutrient managements on the biological properties and eubacterial community diversity of the Indian semi-arid Alfisol. Archives of Agronomy and Soil Science 60 (4):531–48. doi:10.1080/03650340.2013.803072.
  • Deng, L., K. Wang, Z. Tang, and Z. Shangguan. 2016. Soil organic carbon dynamics following natural vegetation restoration: Evidence from stable carbon isotopes (δ13C). Agriculture, Ecosystems & Environment 221:235–44. doi:10.1016/j.agee.2016.01.048.
  • Díaz-Raviña, M., J. Bueno, S. J. González-Prieto, and T. Carballas. 2005. Cultivation effects on biochemical properties, C storage and 15N natural abundance in the 0–5 cm layer of an acidic soil from temperate humid zone. Soil and Tillage Research 84 (2):216–21. doi:10.1016/j.still.2004.10.001.
  • Dijkstra, P., A. Ishizu, R. Doucett, S. C. Hart, E. Schwartz, O. V. Menyailo, and B. A. Hungate. 2006. 13C and 15N natural abundance of the soil microbial biomass. Soil Biology & Biochemistry 38 (11):3257–66. doi:10.1016/j.soilbio.2006.04.005.
  • Eivazi, F., and M. A. Tabatabai. 1988. Glucosidases and galactosidases in soils. Soil Biology & Biochemistry 20 (5):601–06. doi:10.1016/0038-0717(88)90141-1.
  • Fadeeva, V. P., V. D. Tikhova, and O. N. Nikulicheva. 2008. Elemental analysis of organic compounds with the use of automated CHNS analyzers. Journal of Analytical Chemistry 63 (11):1094–106. doi:10.1134/S1061934808110142.
  • Garten, C. T., P. J. Hanson, D. E. Todd, B. B. Lu, and D. J. Brice. 2008. Natural 15N-and 13C-abundance as indicators of forest nitrogen status and soil carbon dynamics.Stable Isotopes in Ecology and Environmental Science 61: 61-82.
  • Gómez-Rey, M. X., A. Couto-Vázquez, and S. J. González-Prieto. 2012. Nitrogen transformation rates and nutrient availability under conventional plough and conservation tillage. Soil and Tillage Research 124:144–52. doi:10.1016/j.still.2012.05.010.
  • González-Prieto, S., M. Díaz-Raviña, A. Martín, and C. López-Fando. 2013. Effects of agricultural management on chemical and biochemical properties of a semiarid soil from central Spain. Soil and Tillage Research 134:49–55. doi:10.1016/j.still.2013.07.007.
  • Kayler, Z. E., M. Kaiser, A. Gessler, R. H. Ellerbrock, and M. Sommer. 2011. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms. Biogeosciences 8 (10):2895–906. doi:10.5194/bg-8-2895-2011.
  • Keeney, D. R., and D. W. Nelson. 1982. Nitrogen—Inorganic forms 1. Methods of soil analysis. Part 2. Chemical and microbiological properties, (methodsofsoilan2), 643–98. Madison: American society of agronomy
  • Klein, D. A., T. C. Loh, and R. L. Goulding. 1971. A rapid procedure to evaluate the dehydrogenase activity of soils low in organic matter. Soil Biology & Biochemistry 3 (4):385–87. doi:10.1016/0038-0717(71)90049-6.
  • Krull, E. S., and J. O. Skjemstad. 2003. δ13C and δ15N profiles in 14C-dated oxisol and vertisols as a function of soil chemistry and mineralogy. Geoderma 112 (1–2):1–29. doi:10.1016/S0016-7061(02)00291-4.
  • Laskar, A. H., M. G. Yadava, and R. Ramesh. 2012. Radiocarbon and stable carbon isotopes in two soil profiles from northeast India. Radiocarbon 54 (1):81–89. doi:10.2458/azu_js_rc.v54i1.15840.
  • Liu, B., C. Tu, S. Hu, M. Gumpertz, and J. B. Ristaino. 2007. Effect of organic, sustainable, and conventional management strategies in grower fields on soil physical, chemical, and biological factors and the incidence of southern blight. Applied Soil Ecology 37 (3):202–14. doi:10.1016/j.apsoil.2007.06.007.
  • López-Fando, C., and M. T. Pardo. 2009. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil and Tillage Research 104 (2):278–84. doi:10.1016/j.still.2009.03.005.
  • Murphy, B., A. Rawson, L. Ravenscroft, M. Rankin, and R. Millard (2003). Paired site sampling for soil carbon estimation – New South Wales. National Carbon Accounting System Technical Report No. 34, Australian Greenhouse Office and the NSW Department of Infrastructure, Planning and Natural Resources, Canberra.
  • Olsen, S. R., and L. E. Somers. 1982. Phosphorus. In Methods of soil analysis, agrononmy no. 9, part 2: Chemical and microbiological properties, ed. A. L. Page, 403–30. 2nd ed. Madison, WI: American Society of Agronomy.
  • Pett-Ridge, J., and M. K. Firestone. 2017. Using stable isotopes to explore root-microbe-mineral interactions in soil. Rhizosphere 3:244–53. doi:10.1016/j.rhisph.2017.04.016.
  • Sainju, U. M., Z. N. Senwo, E. Z. Nyakatawa, I. A. Tazisong, and K. C. Reddy. 2008. Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping systems, and nitrogen fertilizer sources. Agriculture, Ecosystems & Environment 127 (3–4):234–40. doi:10.1016/j.agee.2008.04.006.
  • Schinner, F., and W. Von Mersi. 1990. Xylanase-, CM-cellulase-and invertase activity in soil: An improved method. Soil Biology & Biochemistry 22 (4):511–15. doi:10.1016/0038-0717(90)90187-5.
  • Stanford, G., and L. English. 1949. Use of the flame photometer in rapid soil tests for K and Ca. Agronomy Journal 41 (9):446–47. doi:10.2134/agronj1949.00021962004100090012x.
  • Sudhakaran, M., D. Ramamoorthy, and S. Kumar Rajesh. 2013. Impacts of conventional, sustainable and organic farming system on soil microbial population and soil biochemical properties, Puducherry, India. International Journal of Environmental Sciences 4 (1):28.
  • Sudhakaran, M., D. Ramamoorthy, and S. SavithaVandBalamurugan. 2018. Organic carbon stock and its relationship with soil properties in coastal agroecosystem of Puducherry, India. Journal of Indian Society of Coastal Agricultural Research 36 (1):11–17.
  • Sun, Z., X. Mou, X. Li, L. Wang, H. Song, and H. Jiang. 2011. Application of stable isotope techniques in studies of carbon and nitrogen biogeochemical cycles of ecosystem. Chinese Geographical Science 21 (2):129. doi:10.1007/s11769-011-0453-5.
  • Szpak, P. 2014. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: Implications for the study of ancient agricultural and animal management practices. Frontiers in Plant Science 5:288. doi:10.3389/fpls.2014.00288.
  • Tabatabai, M. A., and J. M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology & Biochemistry 1 (4):301–07. doi:10.1016/0038-0717(69)90012-1.
  • Tabatabai, M. A., and J. M. Bremner. 1972. Assay of urease activity in soils. Soil Biology & Biochemistry 4 (4):479–87. doi:10.1016/0038-0717(72)90064-8.
  • Walkley, A., and I. A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37 (1):29–38. doi:10.1097/00010694-193401000-00003.
  • Wang, G., Y. Jia, and W. Li. 2015. Effects of environmental and biotic factors on carbon isotopic fractionation during decomposition of soil organic matter. Scientific Reports 5:11043. doi:10.1038/srep11043.
  • Yun, S. I., S. S. Lim, G. S. Lee, S. M. Lee, H. Y. Kim, H. M. Ro, and W. J. Choi. 2011. Natural 15N abundance of paddy rice (Oryza sativa L.) grown with synthetic fertilizer, livestock manure compost, and hairy vetch. Biology and Fertility of Soils 47 (6):607–17. doi:10.1007/s00374-011-0571-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.