326
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Seed Germination and Early Seedling Growth of Rhododendron Species in Biochar-Amended Peat Substrates

, , &
Pages 2310-2321 | Received 09 Mar 2020, Accepted 23 Jul 2020, Published online: 29 Sep 2020

References

  • Abad, A., P. Noguera, and S. Burés. 2001. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresource Technology 77 (2):197–200. doi:10.1016/S0960-8524(00)00152-8.
  • Allaire, S. E., and S. F. Lange. 2017. Report: Horticultural substrates containing biochar: Performance and economy. CRMR-2017-SA-3. Centre de Recherchesur les Matériaux Renouvelables, Université Laval, Québec, Canada, p. 40.
  • Altland, J. E., and J. C. Locke. 2013. Effect of biochar type on macronutrient retention and release from soilless substrate. Hortscience 48 (11):1397–402. doi:10.21273/HORTSCI.48.11.1397.
  • Altland, J. E., and J. C. Locke. 2017. High rates of gasified rice hull biochar affect geranium and tomato growth in a soilless substrate. Journal of Plant Nutrition 40 (13):1816–28. doi:10.1080/01904167.2016.1249800.
  • Blok, C., C. Salm, J. Hofland-Zijlstra, M. Streminska, B. Eveleens, I. Regelink, L. Fryda, and R. Visser. 2017. Biochar for horticultural rooting media improvement: Evaluation of biochar from gasification and slow pyrolysis. Agronomy 7 (1):6. doi:10.3390/agronomy7010006.
  • Boldrin, A., K. R. Hartling, M. Laugen, and T. H. Christensen. 2010. Environmental inventory modelling of the use of compost and peat in growth media preparation. Resources, Conservation and Recycling 54 (12):1250–60. doi:10.1016/j.resconrec.2010.04.003.
  • Bu, X. L., J. Su, J. H. Xue, Y. B. Wu, C. X. Zhao, and L. M. Wang. 2019. Effect of rice husk biochar addition on nutrient leaching and microbial properties of calcaric cambisols. Journal of Soil and Water Conservation 74 (2):172–79. doi:10.2489/jswc.74.2.172.
  • Bu, X. L., J. H. Xue, C. X. Zhao, Y. B. Wu, and F. Y. Han. 2017. Nutrient leaching and retention in riparian soils as influenced by rice husk biochar addition. Soil Science 182 (7):241–47. doi:10.1097/ss.0000000000000217.
  • Bustamante, M. A., R. Moral, C. Paredes, A. Pérez-Espinosa, J. Moreno-Caselles, and M. D. Pérez-Murcia. 2008. Agrochemical characterization of the solid by-products and residues from the winery and distillery industry. Waste Management 28 (2):372–80. doi:10.1007/s12155-011-9133-7.
  • Cleary, S., N. T. Roulet, and T. R. Moore. 2005. Greenhouse gas emissions from Canadian peat extraction, 1990–2000: A life-cycle analysis. AMBIO: A Journal of the Human Environment 34 (6):456–61. doi:10.1579/0044-7447-34.6.456.
  • Conversa, G., A. Bonasia, C. Lazzizera, and A. Elia. 2015. Influence of biochar, mycorrhizal inoculation, and fertilizer rate on growth and flowering of pelargonium (Pelargonium zonale L.) plants. Frontiers in Plant Science 6:429. doi:10.3389/fpls.2015.00429.
  • Corbineau, F., Q. Xia, C. Bailly, and H. El-Maarouf-Bouteau. 2014. Ethylene, a key factor in the regulation of seed dormancy. Frontiers in Plant Science 5:1–13. doi:10.3389/fpls.2014.00539.
  • Dispenza, V., C. D. Pasquale, G. Fascella, M. M. Mammano, and G. Alonzo. 2016. Use of biochar as peat substitute for growing substrates of Euphorbia × lomi potted plants. Spanish Journal of Agricultural Research 14 (4):e0908. doi:10.5424/sjar/2016144-9082.
  • Fabbri, D., D. Adamiano, and C. Torri. 2010. GC–MS determination of polycyclic aromatic hydrocarbons evolved from pyrolysis of biomass. Analytical and Bioanalytical Chemistry 397 (1):309–17. doi:10.1007/s00216-010-3563-5.
  • Farhangi-Abriz, S., and S. Torabian. 2017. Biochar increased plant growth-promoting hormones and helped to alleviates salt stress in common bean seedlings. Journal of Plant Growth Regulation 37 (2):591–601. doi:10.1007/s00344-017-9756-9.
  • Fornes, F., and R. M. Belda. 2018. Biochar versus hydrochar as growth media constituents for ornamental plant cultivation. Scientia Agricola 75 (4):304–12. doi:10.1590/1678-992x-2017-0062.
  • Gascó, G., P. Cely, J. Paz-Ferreiro, C. Plaza, and A. Méndez. 2016. Relation between biochar properties and effects on seed germination and plant development. Biological Agriculture and Horticulture 32 (4):237–47. doi:10.1080/01448765.2016.1166348.
  • Geng, Y. Y. 2014. The genus rhododendron of China. Shanghai: Shanghai Scientific and Technical Publisher. 485. (in Chinese).
  • Han, F. Y., X. S. Xu, Y. S. Fu, and X. Wang. 2019. Synthesis of rice-husk-carbon- supported nickel ferrite catalyst for reduction of nitrophenols. Journal of Nanoscience and Nanotechnology 19 (9):5838–46. doi:10.1166/jnn.2019.16567.
  • Headlee, W. L., C. E. Brewer, and R. B. Hall. 2013. Biochar as a substitute for vermiculite in potting mix for hybrid poplar. BioEnergy Research 7 (1):120–31. doi:10.1007/s12155-013-9355-y.
  • Hilioti, Z., C. M. Michailof, D. Valasiadis, E. F. Iliopoulou, V. Koidou, and A. A. Lappas. 2017. Characterization of castor plant-derived biochars and their effects as soil amendments on seedlings. Biomass & Bioenergy 105:96–106. doi:10.1016/j.biombioe.2017.06.022.
  • Hoover, B. K. 2018. Herbaceous perennial seed germination and seedling growth in biochar-amended propagation substrates. Hortscience 53 (2):236–41. doi:10.21273/HORTSCI12624-17.
  • Ippolito, J. A., D. A. Laird, and W. J. Busscher. 2012. Environmental benefits of biochar. Journal of Environmental Quality 41 (4):967–72.
  • Jayasinghe, G. Y. 2012. Synthetic soil aggregates as a potting medium for ornamental plant production. Journal of Plant Nutrition 35 (10):1441–56. doi:10.1080/01904167.2012.671406.
  • Jayasinghe, G. Y., Y. Tokashiki, K. Kinjo, and I. D. L. Arachchi. 2010. Evaluation of the use of synthetic red soil aggregates (SRA) and zeolite as substrate for ornamental plant production. Journal of Plant Nutrition 33 (14):2120–34. doi:10.1080/01904167.2010.519085.
  • Lehmann, J., and S. Joseph. 2009. Biochar for environmental management: An introduction. In Biochar for environmental management, ed. J. Lehmann and S. Joseph, 1–9. London, UK: Earthscan.
  • Lucas, R. E., and J. F. Davis. 1961. Relationships between pH values of organic soils and availabilities of 12 plant nutrients. Soil Science 92 (3):177–82. doi:10.1097/00010694-196109000-00005.
  • Ma, W. B., X. J. Zhao, D. Y. Tan, C. C. Baskin, J. M. Baskin, and J. H. Xue. 2010. Nutlet dimorphism in individual flowers of two cold desert annual Lappula species (Boraginaceae): Implications for escape by offspring in time and space. Plant Ecology 209 (2):361–74. doi:10.1007/s11258-010-9772-3.
  • Margenot, A. J., D. E. Griffin, B. S. Q. Alves, D. A. Rippner, C. Y. Li, and S. J. Parikh. 2018. Substitution of peat moss with softwood biochar for soil-free marigold growth. Industrial Crops and Products 112:160–69. doi:10.1016/j.indcrop.2017.10.053.
  • Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon and organic matter. In Methods of soil analysis. part 3. chemical methods, ed. J. M. Bigham, 961–1010. Madison, Wisconsin: ASA-SSSA.
  • Nemati, M. R., F. Simard, J. P. Fortin, and J. Beaudoin. 2015. Potential use of biochar in growing media. Vadose Zone Journal 14 (6):1–8. doi:10.2136/vzj2014.06.0074.
  • Nieto, A., G. Gascó, J. Paz-Ferreiro, J. M. Fernández, C. Plaza, and A. Méndez. 2016. The effect of pruning waste and biochar addition on brown peat based growing media properties. Scientia Horticulturae 199:142–48. doi:10.1016/j.scienta.2015.12.012.
  • Peng, D. H., M. M. Gu, Y. Zhao, F. Yu, and H. S. Choi. 2018. Effects of biochar mixes with peat-moss based substrates on growth and development of horticultural crops. Horticultural Science and Technology 36 (4):501–12. doi:10.12972/kjhst.20180050.
  • Pu, P., M. Zhang, and L. N. Zhang. 2014. A study on temperature and time conditions of colorimetric method in measuring soil available phosphorus. Advanced Materials Research 838–841:2047–51. doi:10.4028/www.scientific.net/amr838-841.2047.
  • Sarauer, J. L., and M. D. Coleman. 2018. Biochar as a growing media component for containerized production of Douglas-fir. Canadian Journal of Forest Research 48 (5):581–88. doi:10.1139/cjfr-2017-0415.
  • Solaiman, Z. M., D. V. Murphy, and L. K. Abbott. 2012. Biochars influence seed germination and early growth of seedlings. Plant and Soil 353 (1–2):273–87. doi:10.1007/s11104-011-1031-4.
  • Spokas, K. A., J. M. Baker, and D. C. Reicosky. 2010. Ethylene: Potential key for biochar amendment impacts. Plant and Soil 333 (1–2):443–52. doi:10.1007/s11104-010-0359-5.
  • Sun, H., H. Lu, and Y. Feng. 2019b. Greenhouse gas emissions vary in response to different biochar amendments: An assessment based on two consecutive rice growth cycles. Environmental Science and Pollution Research 26 (1):749–58. doi:10.1007/s11356-018-3636-0.
  • Sun, H., H. Zhang, H. Xiao, W. Shi, K. Müller, L. Van Zwieten, and H. Wang. 2019a. Wheat straw biochar application increases ammonia volatilization from an urban compacted soil giving a short-term reduction in fertilizer nitrogen use efficiency. Journal of Soils and Sediments 19 (4):1624–31. doi:10.1007/s11368-018-2169-y.
  • Tian, Y., X. Sun, S. Li, H. Wang, L. Wang, J. Cao, and L. Zhang. 2012. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata. Scientia Horticulturae 143:15–18. doi:10.1016/j.scienta.2012.05.018.
  • Vaughn, S. F., J. A. Kenar, A. R. Thompson, and S. C. Peterson. 2013. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Industrial Crops and Products 51:437–43. doi:10.1016/j.indcrop.2013.10.010.
  • Yao, L., M. A. Naeth, and F. P. O. Mollard. 2017. Ecological role of pyrolysis by-products in seed germination of grass species. Ecological Engineering 108:78–82. doi:10.1016/j.ecoleng.2017.08.018.
  • Yeager, T., C. Gilliam, T. E. Bilderback, D. Fare, A. Niemiera, and K. Tilt. 1997. Best management practices, guide for producing container-grown plants. Atlanta, Georgia: Southern Nursery Association.
  • Zhang, C. Q., L. M. Gao, R. G. Xue, and J. Q. Yang. 2004. A general review of the research and conservation statue of chinese rhododendron. Guangxi Sciences 11 (4):354–59. in Chinese.
  • Zhang, W., J. Zhao, F. J. Pan, D. J. Li, H. S. Chen, and K. L. Wang. 2015. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China. Plant and Soil 391 (1–2):77–91. doi:10.1007/s11104-015-2406-8.
  • Zhou, Z., T. Gao, L. Van Zwieten, Q. Zhu, T. Yan, J. Xue, and Y. Wu. 2019. Soil microbial community structure shifts induced by biochar and biochar-based fertilizer amendment to karst calcareous soil. Soil Science Society of America Journal 83 (2):398–408. doi:10.2136/sssaj2018.08.0297.
  • Zulfiqar, F., S. E. Allaire, N. A. Akram, A. Méndez, A. Younis, A. M. Peerzada, N. Shaukat, and S. R. Wright. 2019. Challenges inorganic component selection and biochar as an opportunity in potting substrates: A review. Journal of Plant Nutrition 42 (11–12):1386–401. doi:10.1080/01904167.2019.1617310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.