147
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Comparison of Stepwise Multilinear Regressions, Artificial Neural Network, and Genetic Algorithm-Based Neural Network for Prediction the Plant Available Water of Unsaturated Soils in a Semi-arid Region of Iran (Case Study: Chaharmahal Bakhtiari Province)

, ORCID Icon, &
Pages 2297-2309 | Received 23 Mar 2020, Accepted 31 Jul 2020, Published online: 05 Oct 2020

References

  • Anagu, I., J. Ingwersen, J. Utermann, and T. Streck. 2009. Estimation of heavy metal sorption in german soils using artificial neural networks. Geoderma 152 (1–2):104–12. doi:10.1016/j.geoderma.2009.06.004.
  • Basalatpour, A. A. 2012. “Modelling of soil erosion hazard in the bazoft watershed using fuzzy logic algorithm, SWAT model, and fuzzy clustering-genetic algorithm.” PhD thesis in soil science. Faculty of agriculture, Isfahan University of ….
  • Bavi, O., and M. Salehi. 2008. Genetic algorithms and optimization of composite structures. Abed and Mehregan Ghalam.
  • Bazoobandi, A., S. Emamgholizadeh, and H. Ghorbani. 2019. Estimating the amount of cadmium and lead in polluted soil using artificial intelligence models. European Journal of Environmental and Civil Engineering 8–9. doi:10.1080/19648189.2019.1686429.
  • BELYANI, A., M. SHORAFA, and M. OMID. 2012. “Estimation of index points of soil moisture retention curve of some calcareous soils with readily available soil properties by artificial neural network.”
  • Blake, G. R. ꎬ., and K. H. Hartge. 1986. Bulk density. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 5:363–75.
  • Bortolini, D., and J. A. Albuquerque. 2018. “Estimation of the retention and availability of water in soils of the state of Santa Catarina,” 1–13.
  • Botula, Y.-D., A. Nemes, P. Mafuka, E. Van Ranst, and W. M. Cornelis. 2013. Prediction of water retention of soils from the humid tropics by the nonparametric K-nearest neighbor approach. Vadose Zone Journal 12:2. doi:10.2136/vzj2012.0123.
  • Dardanelli, J. L., J. T. Ritchie, M. Calmon, J. M. Andriani, and D. J. Collino. 2004. An empirical model for root water uptake. Field Crops Research 87 (1):59–71. doi:10.1016/j.fcr.2003.09.008.
  • Dashtaki, S. G., M. Homaee, and H. Khodaverdiloo. 2010. Derivation and validation of pedotransfer functions for estimating soil water retention curve using a variety of soil data. Soil Use and Management 26 (1):68–74. doi:10.1111/j.1475-2743.2009.00254.x.
  • Emamgholizadeh, S., S. Kiana Bahman, M. Bateni, H. Ghorbani, I. Marofpoor, and J. R. Nielson. 2017. Estimation of soil dispersivity using soft computing approaches. Neural Computing & Applications 28:207–16. doi:10.1007/s00521-016-2320-x.
  • Emamgolizadeh, S., S. M. Bateni, D. Shahsavani, T. Ashrafi, and H. Ghorbani. 2015. Estimation of soil cation exchange capacity using genetic expression programming (GEP) and multivariate adaptive regression splines (MARS). Journal of Hydrology 529:1590–600. doi:10.1016/j.jhydrol.2015.08.025.
  • Epebinu, O., and B. Nwadialo. 1993. Predicting soil water availability from texture and organic matter content for Nigerian soils. Communications in Soil Science and Plant Analysis 24 (7–8):633–40. doi:10.1080/00103629309368829.
  • Fashi FH, Sharifi F, Kheirkhah M.. 2019. Adaptive neuro fuzzy inference system approach for developing soil water retention pedotransfer functions in flood spreading areas. Journal of Soil and Water Conservation 74(2):180-7. doi:10.2489/jswc.74.2.180.
  • Fenton, G., K. R. Helyar, and P. Orchard. 1993. Soil acidity and liming. NSW agriculture. Agricultural Fact 2:19–24.
  • Gharun, M., M. Azmi, and M. A. Adams. 2015. Short-term forecasting of water yield from forested catchments after bushfire: A case study from southeast Australia. Water 7 (2):599–614. doi:10.3390/w7020599.
  • Ghorbani, H., H. Kashi, N. H. Moghadas, and S. Emamgholizadeh. 2015. Estimation of soil cation exchange capacity using multiple regression, artificial neural networks, and adaptive neuro-fuzzy inference system models in Golestan Province, Iran. Communications in Soil Science and Plant Analysis 46 (6):763–80. doi:10.1080/00103624.2015.1006367.
  • Gunarathna, M. H. J. P., and K. Sakai. 2018. Evaluation of pedotransfer functions for estimating soil moisture constants: A study on soils in dry zone of tropical Sri Lanka. International Journal of Advanced Science Engineering and Technology 6 (1):15–19.
  • Honarbakhsh, A., M. Tahmoures, and Y. Ostovari. 2017. Communications in soil science and plant analysis developing pedotransfer functions for predicting FC and PWP. Communications in Soil Science and Plant Analysis 00 ( 00):1–11. doi:10.1080/00103624.2017.1414829.
  • Jain, A. K., J. Mao, and K. Moidin Mohiuddin. 1996. Artificial neural networks: A tutorial. Computer 29 (3):31–44. doi:10.1109/2.485891.
  • Johari, A., A. A. Javadi, and G. Habibagahi. 2011. Computers and geotechnics modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network. Computers and Geotechnics 38 (1):2–13. doi:10.1016/j.compgeo.2010.08.011.
  • Karamouz M, Zahraie B, Araghinejad S. 2005. Decision support system for monthly operation of hydropower reservoirs: A case study. Journal of computing in civil engineering 19(2):194-207
  • Kashi, H., S. Emamgholizadeh, and H. Ghorbani. 2014. Estimation of soil infiltration and cation exchange capacity based on multiple regression, ANN (RBF, MLP), and ANFIS models. Communications in Soil Science and Plant Analysis 45 (9):1195–213. doi:10.1080/00103624.2013.874029.
  • Khaledian, Y., E. C. Paulo Pereira, N. P. Brevik, and D. Paliulis. 2017. The influence of organic carbon and PH on heavy metals, potassium, and magnesium levels in lithuanian podzols. Land Degradation and Development 28 (1):345–54. doi:10.1002/ldr.2638.
  • Khoshnevisan, B., S. Rafiee, M. Omid, and H. Mousazadeh. 2014. Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information Processing in Agriculture 1 (1):14–22. doi:http://dx.doi.10.1016/j.inpa.2014.04.001.
  • Landon, J. R. 2014. Booker Tropical Soil Manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics. Routledge.
  • Langroodi, S., H. Motiee, M. G. Masoum, H. Nasiri, and S. T. Javi. 2015. Spatial and temporal variability analysis of groundwater quantity to land-use/land-cover change in the Khanmirza agricultural plain in Iran. Arabian Journal of Geosciences 8 (10):8385–97. doi:10.1007/s12517-015-1786-7.
  • Liu, W., Q. Liu, F. Ruan, Z. Liang, and H. Qiu. 2007. Springback prediction for sheet metal forming based on GA-ANN technology. Journal of Materials Processing Technology 187–188:227–31. doi:10.1016/j.jmatprotec.2006.11.087.
  • McBratney, A. B., B. Minasny, S. R. Cattle, and R. Willem Vervoort. 2002. From pedotransfer functions to soil inference systems. Geoderma 109 (1–2):41–73. doi:10.1016/S0016-7061(02)00139-8.
  • Merdun, H., Ö. Çınar, R. Meral, and M. Apan. 2006. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research 90 (1–2):108–16. doi:10.1016/j.still.2005.08.011.
  • Mosaddeghi, M. R., and A. A. Mahboubi. 2011. Point pedotransfer functions for prediction of water retention of selected soil series in a semi-arid region of Western Iran. Archives of Agronomy and Soil Science 57 (4):327–42. doi:10.1080/03650340903386313.
  • NADIAN, H. A., and D. A. S. H. T. A. K. I. S. GHORBANI. 2017. “Point estimation of soil moisture characteristic curve using artificial neural networks and its optimizing by genetic algorithm in agro-industries of Khouzestan.”
  • Naghdi, R., and I. Ghajar. 2012. Application of artificial neural network in the modeling of skidding time prediction. Advanced Materials Research 403:3538–43. Trans Tech Publ.
  • Nelson DW, Sommers L.. 1983. Total Carbon, Organic Carbon, and Organic Matter 1. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. no. methodsofsoilan, 9:539-79.
  • Mirhosseini M, Mashinchi M, Nezamabadi-pour H. 2011. Improving n-similarity problem by genetic algorithm and its application in text document resemblance. Fuzzy Information and Engineering 6(3):263-78.
  • Parasuraman, K., A. Elshorbagy, and B. C. Si. 2006. Estimating saturated hydraulic conductivity in spatially variable fields using neural network ensembles. Soil Science Society of America Journal 70 (6):1851–59. doi:10.2136/sssaj2006.0045.
  • Pezo, L., M. Arsenović, and R. Zagorka. 2014. ANN model of brick properties using LPNORM calculation of minerals content. Ceramics International 40 (7 PART A):9637–45. doi:10.1016/j.ceramint.2014.02.044.
  • Qiao, J., Y. Zhu, X. Jia, L. Huang, and M. Shao. 2018. “Pedotransfer functions for estimating the field capacity and permanent wilting point in the critical zone of the Loess plateau, China,” no. Bouma 1989.
  • Samadianfard, S., M. A. Ghorbani, and B. Mohammadi. 2018. Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm. Information Processing in Agriculture. doi:10.1016/j.inpa.2018.06.005.
  • Sanikhani, H., R. C. Deo, Z. M. Yaseen, O. Eray, and O. Kisi. 2018. Non-tuned data intelligent model for soil temperature estimation: A new approach. Geoderma 330 (November):52–64. doi:10.1016/J.GEODERMA.2018.05.030.
  • Saxton, K. E., W. _. J. Rawls, J. S. Romberger, and R. I. Papendick. 1986. Estimating generalized soil‐water characteristics from texture. Soil Science Society of America Journal 50 (4):1031–36. doi:10.2136/sssaj1986.03615995005000040039x.
  • Schaap, M. G., F. J. Leij, and M. T. Van Genuchten. 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Society of America Journal 62 (4):847–55. doi:10.2136/sssaj1998.03615995006200040001x.
  • Schaap, M. G., and W. Bouten. 1996. Modeling water retention curves of sandy soils using neural networks. Water Resources Research 32 (10):3033–40. doi:10.1029/96WR02278.
  • “SPSS: Stepwise linear regression.” n.d. Accessed March 3, 2020. http://www.geog.leeds.ac.uk/courses/other/statistics/spss/stepwise/.
  • Steduto, P., T. C. Hsiao, D. Raes, and E. Fereres. 2009. AquaCrop the FAO crop model to predict yield response to water. i concepts. special issue on ‘yield response to water: Examination of the role of crop models in predicting water use efficiency’. Agronomy Journal 101:426–37. doi:10.2134/agronj2008.0139s.
  • Taghizadeh-Mehrjardi, R., S. Ayoubi, Z. Namazi, B. P. Malone, A. A. Zolfaghari, and F. Roustaei Sadrabadi. 2016. Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming. Arid Land Research and Management 30 (1):49–64. doi:10.1080/15324982.2015.1046092.
  • Taşan, S., and Y. Demir. 2020. Communications in soil science and plant analysis comparative analysis of MLR, ANN, and ANFIS models for prediction of field capacity and permanent wilting point for Bafra plain soils comparative analysis of MLR, ANN, and ANFIS models for. Communications in Soil Science and Plant Analysis 00 ( 00):1–18. doi:10.1080/00103624.2020.1729374.
  • Vahedi, A. A. 2017. Monitoring soil carbon pool in the Hyrcanian coastal plain forest of Iran: Artificial neural network application in comparison with developing traditional models. Catena 152:182–89. doi:10.1016/j.catena.2017.01.022.
  • Yaseen, Z. M., I. Ebtehaj, S. Kim, H. Sanikhani, H. Asadi, M. I. Ghareb, H. Bonakdari, W. H. M. Wan Mohtar, N. Al-Ansari, and S. Shahid. 2019. Novel hybrid data-intelligence model for forecasting monthly rainfall with uncertainty analysis. Water (Switzerland) 11 (3). doi: 10.3390/w11030502.
  • Yegnanarayana, B. 2009. Artificial Neural Networks. PHI Learning Pvt. Ltd.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.