123
Views
4
CrossRef citations to date
0
Altmetric
Research Article

UV-visible Spectroscopy as a New Tool to Predict the Bioactivity of Humic Fragments Induced by Citric/ Oxalic Acids on Eucalyptus Nutrition and Growth

ORCID Icon, &
Pages 2830-2845 | Received 31 May 2020, Accepted 15 Sep 2020, Published online: 22 Nov 2020

References

  • Adeleke, R., C., Nwangburuka, and B. Oboirien. 2017. Origins, roles and fate of organic acids in soils: A review. South African Journal of Botany 108:393–406. doi:10.1016/j.sajb.2016.09.002.
  • Baldotto, M. A., V. B. Giro, L. E. B. Baldotto, L. P. Canellas, and A. C. X. Velloso. 2011. Initial performance of pineapple and utilization of rock phosphate applied in combination with organic compounds to leaf axils. Revista Ceres 58 (3):393–401. doi:10.1590/S0034-737X2011000300021.
  • Barone, V., Bertoldo, G., Magro, F., Broccanello, C., Puglisi, I., Baglieri, A., Cagnin, M., Concheri, G., Squartini, A., Pizzeghello, D., Nardi, S. and Stevanato, P. 2019. Molecular and morphological changes induced by leonardite-based biostimulant in beta vulgaris L. Plants 8 (6):181. doi:10.3390/plants8060181.
  • Boguta, P., and Z. Sokołowska. 2016. Interactions of Zn(II) ions with humic acids isolated from various type of soils. Effect of pH, Zn concentrations and humic acids chemical properties. Fraceto L, editor. Plos One 11 (4):e0153626. doi:10.1371/journal.pone.0153626.
  • Bukhari, N. A., J. M. Jahim, S. K. Loh, A. B. Nasrin, S. Harun, and P. M. Abdul. 2020. Organic acid pretreatment of oil palm trunk biomass for succinic acid production. Waste Biomass Valor 1:1–11.
  • Calvo, P., L. Nelson, and J. W. Kloepper. 2014. Agricultural uses of plant biostimulants. Plant and Soil 383 (1–2):3–41.
  • Canellas, L. P., and F. L. Olivares. 2014. Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture 1 (1):3. doi:10.1186/2196-5641-1-3.
  • Canellas, L. P., F. L. Olivares, N. O. Aguiar, D. L. Jones, A. Nebbioso, P. Mazzei, and A. Piccolo. 2015. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae 196:15–27. doi:10.1016/j.scienta.2015.09.013.
  • Canellas, L. P., L. R. L. Teixeira Junior, L. B. Dobbss, C. A. Silva, L. O. Medici, D. B. Zandonadi, and A. R. Façanha. 2008. Humic acids crossinteractions with root and organic acids. Annals of Applied Biology 153 (1):157–66.
  • Colombo, C., G. Palumbo, J.-Z. He, R. Pinton, and S. Cesco. 2014. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments 14 (3):538–48. doi:10.1007/s11368-013-0814-z.
  • Core Team, R. 2018. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • El-Shabrawi, H. M., B. A. Bakry, M. A. Ahmed, and M. Abou-El-Lail. 2015. Humic and oxalic acid stimulates grain yield and induces accumulation of plastidial carbohydrate metabolism enzymes in wheat grown under sandy soil conditions. Agricultural Sciences 6 (1):175–85. doi:10.4236/as.2015.61016.
  • Faraway, J. 2016. Faraway: Functions and datasets for books by julian faraway [Internet]. [place unknown]. https://CRAN.R-project.org/package=faraway.
  • Ferreira, E. B., P. P. Cavalcanti, and D. A. Nogueira. 2013. ExpDes: Experimental designs package [Internet]. [place unknown]. http://CRAN.R-project.org/package=ExpDes.
  • García, A. C., L. G. A. de Souza, M. G. Pereira, R. N. Castro, J. M. García-Mina, E. Zonta, F. J. G. Lisboa, and R. L. L. Berbara. 2016. Structure-property-function relationship in humic substances to explain the biological activity in plants. Scientific Reports 6 (1):20798. doi:10.1038/srep20798.
  • Garcia-Mina, J. M. 2006. Stability, solubility and maximum metal binding capacity in metal–humic complexes involving humic substances extracted from peat and organic compost. Organic Geochemistry 37 (12):1960–72. doi:10.1016/j.orggeochem.2006.07.027.
  • Halpern, M., A. Bar-Tal, M. Ofek, D. Minz, T. Muller, and U. Yermiyahu. 2015. The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy 130:141–74.
  • Hoagland, D. R., and D. I. Arnon. 1950. The water-culture method for growing plants without soil. California: California agricultural experiment station
  • Ikka, T., T. Ogawa, D. Li, S. Hiradate, and A. Morita. 2013. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus camaldulensis Dehnh. Phytochemistry 94:142–47. doi:10.1016/j.phytochem.2013.06.016.
  • Jindo, K., S. A. Martim, E. C. Navarro, F. Pérez-Alfocea, T. Hernandez, C. Garcia, N. O. Aguiar, and L. P. Canellas. 2012. Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant and Soil 353 (1–2):209–20. doi:10.1007/s11104-011-1024-3.
  • Jindo, K., T. S. Soares, L. E. P. Peres, I. G. Azevedo, N. O. Aguiar, P. Mazzei, R. Spaccini, A. Piccolo, F. L. Olivares, and L. P. Canellas. 2016. Phosphorus speciation and high-affinity transporters are influenced by humic substances. Journal of Plant Nutrition and Soil Science 179 (2):206–14. doi:10.1002/jpln.201500228.
  • Kalra, Y. P., editor. 1998. Handbook of reference methods for plant analysis. Boca Raton: CRC Press.
  • Li, P., and J. Hur. 2017. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Critical Reviews in Environmental Science and Technology 47 (3):131–54. doi:10.1080/10643389.2017.1309186.
  • Marschner, P. 2012. Marschner’s mineral nutrition of higher plants. London: Academic press.
  • Morais, E. G., C. A. Silva, and S. D. Rosa. 2018. Nutrient acquisition and eucalyptus growth affected by humic acid sources and concentrations. Semina: Ciências Agrárias 39 (4):1417–36.
  • Morard, P., B. Eyheraguibel, M. Morard, and J. Silvestre. 2010. Direct effects of humic-like substance on growth, water, and mineral nutrition of various species. Journal of Plant Nutrition 34 (1):46–59. doi:10.1080/01904167.2011.531358.
  • Moreira, S. G., L. I. Prochnow, J. de Castro Kiehl, V. Pauletti, and L. Martin-Neto. 2016. Chemical forms in soil and availability of manganese and zinc to soybean in soil under different tillage systems. Soil and Tillage Research 163:41–53. doi:10.1016/j.still.2016.05.007.
  • Murray, H., T. A. Pinchin, and S. M. Macfie. 2011. Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk. Journal of Soils and Sediments 11 (5):815–29. doi:10.1007/s11368-011-0359-y.
  • Nuzzo, A., A. Sánchez, B. Fontaine, and A. Piccolo. 2013. Conformational changes of dissolved humic and fulvic superstructures with progressive iron complexation. Journal of Geochemical Exploration 129:1–5. doi:10.1016/j.gexplo.2013.01.010.
  • Olaetxea, M., D. De Hita, C. A. Garcia, M. Fuentes, R. Baigorri, V. Mora, M. Garnica, O. Urrutia, J. Erro, A. M. Zamarreño, et al. 2018. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot- growth. Applied Soil Ecology 123:521–37. doi:10.1016/j.apsoil.2017.06.007.
  • Olaetxea, M., V. Mora, E. Bacaicoa, R. Baigorri, M. Garnica, M. Fuentes, A. M. Zamarreño, L. Spíchal, and J. M. García-Mina. 2019. Root ABA and H + -ATPase are key players in the root and shoot growth-promoting action of humic acids. Plant Direct 3 (10):e00175. doi:10.1002/pld3.175.
  • Peacock, M., C. D. Evans, N. Fenner, C. Freeman, R. Gough, T. G. Jones, and I. Lebron. 2014. UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: Considerations on wavelength and absorbance degradation. Environmental Science: Processes & Impacts 16 (6):1445.
  • Piccolo, A. 2001. The supramolecular structure of humic substances. Soil Science 166 (11):810–32. doi:10.1097/00010694-200111000-00007.
  • Piccolo, A., P. Conte, and A. Cozzolino. 1999. Effects of mineral and monocarboxylic acids on the molecular association of dissolved humic substances. European Journal of Soil Science 50 (4):687–94.
  • Piccolo, A., P. Conte, R. Spaccini, and M. Chiarella. 2003. Effects of some dicarboxylic acids on the association of dissolved humic substances. Biology and Fertility of Soils 37 (4):255–59. doi:10.1007/s00374-003-0583-8.
  • Piccolo, A., R. Spaccini, D. Savy, M. Drosos, and V. Cozzolino. 2019. The soil humeome: Chemical structure, functions and technological perspectives. In Sustainable agrochemistry, ed. Vaz Jr., S, 183–222. Cham: Springer International Publishing.
  • Piccolo, A., S. Nardi, and G. Concheri. 1996. Macromolecular changes of humic substances induced by interaction with organic acids. European Journal of Soil Science 47 (3):319–28. doi:10.1111/j.1365-2389.1996.tb01405.x.
  • Pinheiro, G. L., C. A. Silva, and A. E. Furtini Neto. 2010. Crescimento e nutrição de clone de eucalipto em resposta à aplicação de concentrações de C-ácido húmico. Revista Brasileira De Ciência Do Solo 34 (4):1217–29. doi:10.1590/S0100-06832010000400021.
  • Reddy, S., M. S. Nagaraja, T. S. Punith Raj, A. S. Police Patil, and P. Dhumgond. 2014. Elemental analysis, E4/E6 ratio and total acidity of soil humic and fulvic acids from different land use systems. Annals of Plant and Soil Research 16 (2):89–92.
  • Rima, J. A. H., M. L. B. DobbssI, J. A. M. EvaristoIII, C. A. R. A. R. FaçanhaIV, and L. P. CanellasV. 2011. Citric acid addition improve humic acids action and change proteins profile from plasma membrane of maize roots. Ciência Rural 41 (4):614–20. doi:10.1590/S0103-84782011000400011.
  • Rose, M. T., A. F. Patti, K. R. Little, A. L. Brown, W. R. Jackson, and T. R. Cavagnaro. 2014. A meta-analysis and review of plant-growth response to humic substances. Advances in Agronomy 124:37–89.
  • Silva, C. A., E. G. Morais, and H. J. G. M. Maluf 2019. Processo de produção de ácidos húmicos ativados por ácidos orgânicos para uso agrícola. patent BR1020190142790.
  • Suzuki, R., and H. Shimodaira. 2015. pvclust: Hierarchical clustering with P-values via multiscale bootstrap resampling [Internet]. [place unknown]. https://CRAN.R-project.org/package=pvclust.
  • Swift, R. S. 1996. Organic matter characterization. In Methods of soil analysis part 3: Chemical methods, ed. Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., Sumner, M. E., 1011–20. Hoboken, New Jersey: John Wiley & Sons.
  • Tavares, O. C. H., L. A. Santos, L. M. Ferreira, M. V. L. Sperandio, J. G. da Rocha, A. C. García, L. B. Dobbss, R. L. L. Berbara, S. R. de Souza, and M. S. Fernandes. 2017. Humic acid differentially improves nitrate kinetics under low- and high-affinity systems and alters the expression of plasma membrane H + -ATPases and nitrate transporters in rice: Humic acid alters nitrate uptake kinetics, PM H + -ATPases and NRT expression. Annals of Applied Biology 170 (1):89–103.
  • Tomasi, N., M. De Nobili, S. Gottardi, L. Zanin, T. Mimmo, Z. Varanini, V. Römheld, R. Pinton, and S. Cesco. 2013. Physiological and molecular characterization of Fe acquisition by tomato plants from natural Fe complexes. Biology and Fertility of Soils 49 (2):187–200. doi:10.1007/s00374-012-0706-1.
  • Trevisan, S., O. Francioso, S. Quaggiotti, and S. Nardi. 2010. Humic substances biological activity at the plant-soil interface: From environmental aspects to molecular factors. Plant Signaling & Behavior 5 (6):635–43. doi:10.4161/psb.5.6.11211.
  • Waldrip, H. M., Z. He, R. W. Todd, J. F. Hunt, M. B. Rhoades, and N. A. Cole. 2014. Characterization of organic matter in beef feedyard manure by ultraviolet-visible and fourier transform infrared spectroscopies. Journal of Environment Quality 43 (2):690. doi:10.2134/jeq2013.09.0358.
  • Ward, J. H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58 (301):236–44. doi:10.1080/01621459.1963.10500845.
  • Wei, T., and V. Simko. 2017. R package “corrplot”: Visualization of a correlation matrix} [Internet]. [place unknown]. https://github.com/taiyun/corrplot.
  • Xu, J., W. Tan, J. Xiong, M. Wang, L. Fang, and L. K. Koopal. 2016. Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra. Journal of Colloid and Interface Science 473:141–51. doi:10.1016/j.jcis.2016.03.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.