567
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Assessment of Various Pedotransfer Functions for the Prediction of the Dry Bulk Density of Cultivated Soils in a Semiarid Environment

, & ORCID Icon
Pages 724-742 | Received 02 May 2020, Accepted 23 Dec 2020, Published online: 29 Dec 2020

References

  • Abdelbaki, A. M. 2018. Evaluation of pedotransfer functions for predicting soil bulk density for US soils. Ain Shams Engineering Journal 9:1611–19. doi:10.1016/j.asej.2016.12.002.
  • Akgül, M., L. Başayiğit, and Y. Uçar. 2002. General properties and classification of the Atabey plain. Süleyman Demirel University. Journal of the Institute of Natural and Applied Science 6 (1):1–13.
  • Aksakal, E. L. 2004. Soil compaction and its importance for agriculture. Atatürk University Journal of Agricultural Faculty 35 (3–4):247–52.
  • Aksakal, E. L., and T. Öztaş. 2010. Changes in distribution patterns of soil penetration resistance within a silage-corn field following the use of heavy harvesting equipments. Turkish Journal of Agriculture and Forestry 34:173–79.
  • Alaboz, P., and A. A. Işıldar. 2019. Evaluation of pedotransfer functions (PTFs) for some soil physical properties. Turkish Journal of Science and Engineering 1 (1):28–34. (in Turkish).
  • Alpar, R. 2017. Applied multivariate statistical methods. Ankara, Turkey: Detay Press.
  • Altınbaş, Ü., M. Çengel, H. Uysal, B. Okur, N. Okur, Y. Kurucu, and S. Delibacak. 2006. Soil science. İzmir: Ege University Faculty of Agriculture Publications.
  • Arslan, H. 2012. Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Agricultural Water Management 113:57–63. doi:10.1016/j.agwat.2012.06.015.
  • Aşkın, T., F. Türkmen, and C. Tarakçıoğlu. 2016. Assessment of erosion risk in soils of Ordu central district by geostatistical techniques. Toprak Bilimi Ve Bitki Besleme Dergisi 4 (2):69–75.
  • Aydın, A., and O. Dengiz. 2019. Determination of physico-chemical and nutrient element content of soils formed under semi-humid ecological environment. Academic Journal of Agriculture 8 (2):301–12.
  • Benites, V. M., P. L. O. A. Machado, E. C. C. Fidalgo, M. R. Coelho, and B. E. Madari. 2007. Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma 139:90–97. doi:10.1016/j.geoderma.2007.01.005.
  • Botula, Y. D., A. Nemes, E. Van Ranst, P. Mafuka, and W. M. Cornelis. 2015. Hierarchical pedotransfer functions to predict bulk density of highly weathered soils in central Africa. Soil Science Society of America Journal 79:476–86. doi:10.2136/sssaj2014.06.0238.
  • Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54:464–65. doi:10.2134/agronj1962.00021962005400050028x.
  • Budak, M., H. Günal, İ. Çelik, N. Acır, and M. Sırrı. 2018. Characterizing spatial variability of soil properties in Tigris basin using geostatistics and geographical information systems. Turkish Journal of Agricultural Research 5 (2):103–15.
  • Burt, R. 2014. Soil survey field and laboratory methods manual. United States Department of Agriculture, Natural Resources Conservation Service. National Soil Survey Center. Kellog Soil Survey Laboratory.
  • Candemir, F., and C. Gülser. 2012. Influencing factors and prediction of hydraulic conductivity in fine textured-alkaline soils. Arid Land Research Management 26:15–31. doi:10.1080/15324982.2011.631686.
  • Çavuşlu, M. A., Y. Becerikli, and C. Karakuzu. 2012. Hardware Implementation of neural network training with Levenberg-Marquardt algorithm. Turkish Journal of Electric Engineer and Computer Science 5:31–38. (in Turkish).
  • Chaudhari, P. R., D. V. Ahire, M. Chkravarty, and S. Maity. 2014. Electrical conductivity as a tool for determining the physical properties of Indian soils. International Journal of Scientific and International Journal of Scientific and Research Publications 4:4.
  • Corine. 2018. Corine land use land cover map of Turkey. Accessed Febuary 25, 2020 https://corinecbs.tarimorman.gov.tr/.
  • Dam, R. F., B. B. Mehdi, M. S. E. Burgess, C. A. Madramootoo, G. R. Mehuys, and I. R. Callum. 2005. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. Soil and Tillage Research 84 (1):41–53. doi:10.1016/j.still.2004.08.006.
  • Dengiz, O., F. Saygın, and A. İmamoğlu. 2019. Spatial variability of soil organic carbon density under different land covers and soil types in a sub-humid terrestrial ecosystem. Eurasian Journal of Soil Science 8 (1):35–43.
  • Doran, J. W., and A. J. Jones. 1996. Methods for assessing soil quality. Madison, WI., USA: Soil Science Society of America Special Publication 49. SSSA.
  • Effati, M., H. A. Bahrami, B. A. Darvishi, and R. Azizi. 2013. Assessment and mapping of soil particle size distribution using satellite images analysis and artificial neural networks in Hur Al-Azim Lagoon, Iran. International Journal of Agriculture: Research and Review 3 (1):44–55.
  • Gharahi Ghehi, N., A. Nemes, A. Verdoodt, E. Van Ernst, W. M. Cornelis, and P. Boeckx. 2012. Nonparametric techniques for predicting soil bulk density of tropical rainforest topsoils in Rwanda. Soil Science Society of American Jurnal 76 (4):1172–83. doi:10.2136/sssaj2011.0330.
  • Ghorbani, M. A., S. Shamshirband, D. Z. Haghi, A. Azani, H. Bonakdari, and I. Ebtehaj. 2017. Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil Tillage Research 172:32–38. doi:10.1016/j.still.2017.04.009.
  • Han, G. Z., G. L. Zhang, Z. T. Gong, and G. F. Wang. 2012. Pedotransfer functions for estimating soil bulk density in China. Soil Science 177:158–64. doi:10.1097/SS.0b013e31823fd493.
  • Hazelton, P., and B. Murphy. 2016. Interpreting soil test results: What do all the numbers mean?. 3rd ed, 95–107. Australia: Commonwealth Scientific and Industrial Research Organisation (CSIRO).
  • Heuscher, S. A., C. C. Brandt, and P. M. Jardine. 2005. Using soil physical and chemical properties to estimate bulk density. Soil Science Society of America Journal 69:51–56. doi:10.2136/sssaj2005.0051a.
  • Igwe, C. A., M. Zarei, and K. Stahr. 2013. Stability of aggregates of some weathered soils in south-eastern Nigeria in relation to their geochemical properties. Journal of Earth System Science 122 (5):1283–94. doi:10.1007/s12040-013-0335-6.
  • Isaaks, E. H., and R. M. Srivastava. 1989. An introduction to applied geostatistics. New York, NY: Oxford University Press.
  • Jung, W. K., N. R. Kitchen, K. A. Sudduth, R. J. Kremer, and P. P. Motavalli. 2005. Relationship of apparent soil electrical conductivity to claypan soil properties. Soil Science Society of America Journal 69 (3):883–92. doi:10.2136/sssaj2004.0202.
  • Kacar, B. 2009. Soil analysis. Ankara: Nobel Publisher. (in Turkish).
  • Karaman, M. R., A. R. Brohi, N. M. Müftüoğlu, T. Öztaş, and M. Zengin. 2007. Sustainable soil fertility. Turkey: Koyulhisar Agriculture Culture Publisher.
  • Karaoğlu, M., and U. Şimşek. 2014. The effects of forestation on RUSLE-K factor in lowland ecosystem of semi-arid areas in Turkey. Journal of Agricultural Sciences Research 7 (2):33–36. (in Turkish).
  • Kaur, R., S. Kumar, and H. A. Gurung. 2002. Pedo-transfer function (PTF) for estimating soil bulk density from basic soil data and its comparison with existing PTFs. Australian Journal of Soil Research (40):847–57. doi:10.1071/SR01023.
  • Keller, T., and I. Hakansson. 2010. Estimation of reference bulk density from soil particle size distribution and soil organic matter content. Geoderma 154:398–406. doi:10.1016/j.geoderma.2009.11.013.
  • Kitanidis, P. K. 1997. Introduction to geostatistics: Applications in hydrogeology. 1st ed, 1–11. UK: Cambridge University Press.
  • Li, C. C. 1975. Path analysis - a primer. The Boxwood Press.
  • Manrique, L. A., C. A. Jones, and P. T. Dyke. 1991. Predicting soil water retention characteristics from soil physical and chemical properties. Communications in Soil Science and Plant Analysis 22:1847–60. doi:10.1080/00103629109368540.
  • Mas, J. F., and J. J. Flores. 2008. The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing 29 (3):617–63. doi:10.1080/01431160701352154.
  • McBratney, A., B. Minasny, S. R. Cattle, and R. W. Vervoort. 2002. From pedotransfer functions to soil inference systems. Geoderma 109:41–73. doi:10.1016/S0016-7061(02)00139-8.
  • Miháliková, M., O. Başkan, and O. Dengiz. 2015. Capability of different interpolation models and pedotransfer functions to estimate soil hydraulic properties in Büyükçay Watershed. Environmental Earth Sciences 74 (3):2425–37. doi:10.1007/s12665-015-4246-5.
  • Miháliková, M., S. Matula, and F. Doležal. 2013. HYPRESCZ – Database of soil hydrophysical properties in the Czech Republic. Soil & Water Research 8:34–41. doi:10.17221/58/2012-SWR.
  • Miháliková, M., M. A. Özyazıcı, and O. Dengiz. 2016. Mapping soil water retention on agricultural lands in central and eastern parts of the Black Sea region in Turkey. Journal of Irrigation and Drainage Engineering 142 (12):05016008. doi:10.1061/(ASCE)IR.1943-4774.0001094.
  • Minasny, B., and A. E. Hartemink. 2011. Predicting soil properties in the tropics. Earth-Science Reviews 106:52–62. doi:10.1016/j.earscirev.2011.01.005.
  • Mishra, S., and A. Datta-Gupta. 2017. Applied statistical modelling and data analytics: A practical guide for the petroleum geosciences, 1st ed, 195–223. UK: Elsevier.
  • Mohd-Aizat, A., M. K. Mohamad-Roslan, W. N. A. Sulaiman, and D. S. Karam. 2014. The relationship between soil pH and selected soil properties in 48 years logged-over forest. International Journal of Environmental Sciences 4 (6):1129.
  • Nanko, K., S. Ugawa, S. Hashimoto, A. Imaya, M. Kobayashi, H. Sakai, S. Ishizuka, S. Miura, N. Tanaka, M. Takahashi, et al. 2014. A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash. Geoderma 213:36–45. doi:10.1016/j.geoderma.2013.07.025.
  • Nemes, A., B. Quebedeaux, and D. J. Timlin. 2010. Ensemble approach to provide uncertainty estimates of soil bulk density. Soil Science Society of America Journal 74 (6):1938–45. doi:10.2136/sssaj2009.0370.
  • Özdemir, N., İ. Ekberli, and Ö. T. K. Durmuş. 2018. Journal of Soil Science and Plant Nutrition. Pedotransfer Models for Predicting Bulk Density Values from Measured Soil Properties 6 (1):46–51. (in Turkish).
  • Pachepsky, Y. A., and M. T. Van Genuchten. 2011. Pedotransfer functions. Encyclopedia of Agrophysics 556–61.
  • Rice, T. J. 1999. Liming of vineyard soils. Accessed December 25, 2019: [4p].
  • Senol, H., P. Alaboz, S. Gülsoy, and G. Özkan. 2018. Physicochemical properties of soils under the forests of crimean juniper (Juniperus excelsa bieb.) flora. Artvin Coruh University Journal of Forestry Faculty 19 (1):8–17. (in Turkish).
  • Sivanandam, S. N., and S. N. Deepa. 2006. Introduction to neural networks using Matlab 6.0. 7th ed, 620–647. New Delhi: Tata McGraw-Hill Education.
  • Soil Survey Staff. 2014. Kellogg soil survey laboratory methods manual. Soil survey investigations Report No. 42, Version 5.0, ed. R. burt and soil survey staff. Lincoln, NE: USDA Natural Resources Conservation Service.
  • Sonmez, H., C. Gokceoglu, H. A. Nefeslioglu, and A. Kayabasi. 2006. Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sciences 43:224–35. doi:10.1016/j.ijrmms.2005.06.007.
  • Suuster, E., C. Ritz, H. Roostalu, E. Reintam, R. Kolli, and A. Astover. 2011. Soil bulk density pedotransfer functions of the humus horizon in arable soils. Geoderma 163:74–82. doi:10.1016/j.geoderma.2011.04.005.
  • Tadesse, T., N. Dechassa, W. Bayu, and S. Gebeyehu. 2013. Effects of farmyard manure and inorganic fertilizer application on soil physico-chemical properties and nutrient balance in rain-fed lowland rice ecosystem. American Journal of Plant Sciences 4 (2):309–16. doi:10.4236/ajps.2013.42041.
  • Tranter, G., B. Minasny, A. B. McBratney, B. Murphy, N. J. McKenzie, M. Grundy, and D. Brough. 2007. Building and testing conceptual and empirical models for predicting soil bulk density. Soil Use and Management 23:437–43. doi:10.1111/j.1475-2743.2007.00092.x.
  • TSMS. 2018. Turkish state meteorological service. Turkey. Ankara.
  • Tunçay, T., O. Başkan, İ. Bayramin, O. Dengiz, and Ş. Kılıç. 2018. Geostatistical approach as a tool for estimation of field capacity and permanent wilting point in semiarid terrestrial ecosystem. Archives of Agronomy and Soil Science 64 (9):1240–53. doi:10.1080/03650340.2017.1422081.
  • Usta, A., M. Yilmaz, and Y. O. Kocamanoglu. 2018. Estimation of wet soil aggregate stability by some soil properties in a semi-arid ecosystem. Fresenius Environmental Bulletin 27 (12 A):9026–32.
  • Van Wambeke, A. R. 2000. The Newhall simulation model for estimating soil moisture and temperature regimes. Ithaca, NY, USA: Department of Crop and Soil Sciences. Cornell University.
  • Wilding, L. P. 1985. Spatial variability: Its documentation, accommodation and implication to soil surveys. In Soil Spatial Variability: Pudoc, ed. D. R. Nielsen and J. Bouma, 166–94. Netherlands: Wageningen.
  • Wilding, L. P., J. Bouma, and D. W. Goss. 1994. Impact of spatial variability on interpretative modelling. In Quantitative modelling of soil forming processes, ed. R. B. Bryant and R. W. Arnold. Madison, Wisconsin. USA: SSSA Special Publication Number 39. SSSA. Inc.
  • Witt, S. F., and C. A. Witt. 1992. Modeling and forecasting demand in tourism. Londra, England, UK: Academic Press.
  • Wösten, J. H. M., A. Lilly, A. Nemes, and C. Le Bas. 1999. Development and use of a database of hydraulic properties of European soils. Geoderma 90 (4):169–85. doi:10.1016/S0016-7061(98)00132-3.
  • Xiangsheng, Y. I., L. I. Guosheng, and Y. I. N. Yanyu. 2016. Pedotransfer functions for estimating soil bulk density: A case study in the Three-River Headwater region of Qinghai Province. China Pedosphere 26 (3):362–73. doi:10.1016/S1002-0160(15)60049-2.
  • Yakupoğlu, T., A. Ö. Şişman, and R. Gündoğan. 2015. Predicting of soil aggregate stability values using artificial neural networks. Turkish Journal of Agricultural Research 2 (2):83–92. (in Turkish).
  • Yamaç, S. S., C. Şeker, and H. Negiş. 2020. Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semiarid area. Agricultural Water Management 234:106121. doi:10.1016/j.agwat.2020.106121.
  • Yeşilsoy, M. Ş., and M. Aydın. 1993. Soil physics. Turkey: Cukurova University, Faculty of Agriculture Textbook.
  • Zhao, S., Y. Zhou, M. Wang, X. Xin, and F. Chen. 2014. Thickness, porosity, and permeability prediction: Comparative studies and application of the geostatistical modelling in an oil field. Environmental Systems Research 3 (1):7. doi:10.1186/2193-2697-3-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.