333
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Organic Amendments Combined with Plant Growth-Promoting Rhizobacteria (Azospirillum Brasilense) as an Eco-Friendly By-Product to Remediate and Enhance the Fertility of Saline Sodic-Soils in Egypt

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1416-1433 | Received 30 May 2020, Accepted 22 Jan 2021, Published online: 16 Mar 2021

References

  • Ahmad, P., M. M. Azooz, and M. N. V. Prasad. 2013. Salt stress in plants, salt stress in plants: Signalling, omics and adaptations. New York: Springer New York. doi:10.1007/978-1-4614-6108-1.
  • Ai, C., G. Liang, J. Sun, P. He, S. Tang, S. Yang, W. Zhou, and X. Wang. 2015. The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Biology and Fertility of Soils 51 (4):465–77. doi:10.1007/s00374-015-0994-3.
  • Anderson, J. P. E., A. L. Page, R. H. Miller, and D. R. Keeney. 1982. Methods of soil analysis and soil respiration. doi:10.2134/agronmonogr9.2.2ed.c41.
  • Ashraf, M., S. Hasnain, O. Berge, and T. Mahmood. 2004. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of Soils 40 (3):157–62. doi:10.1007/s00374-004-0766-y.
  • Bano, A., and M. Fatima. 2009. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils 45 (4):405–13. doi:10.1007/s00374-008-0344-9.
  • Barra, P. J., S. Pontigo, M. Delgado, L. Parra–Almuna, P. Duran, A. J. Valentine, M. A. Jorquera, M. Mora, and L. de la. 2019. Phosphobacteria inoculation enhances the benefit of P–fertilization on Lolium perenne in soils contrasting in P–availability. Soil Biology and Biochemistry 136:107516. doi:10.1016/j.soilbio.2019.06.012.
  • Casida, L. E., D. A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Science 98 (6):371–76. doi:10.1097/00010694-196412000-00004.
  • Climate-Data.org. 2019. Climate-data.org. https://en.climate-data.org/africa/egypt/alexandria-governorate/alexandria-515/.
  • Corwin, D. L., and K. Yemoto. 2017. Salinity: Electrical conductivity and total dissolved solids. Methods Soil Anal 2. doi:10.2136/msa2015.0039.
  • Dodd, K., C. N. Guppy, P. V. Lockwood, and I. J. Rochester. 2013. The effect of sodicity on cotton: Does soil chemistry or soil physical condition have the greater role? Crop and Pasture Science 64 (8):806. doi:10.1071/CP13078.
  • Hafez, M., A. I. Popov, and M. Rashad. 2019. Influence of agro-industrial wastes and Azospirillum on nutrients status and grain yield under corn plant growth in Arid regions. Bioscience Research 16:2119–30. www.isisn.org.
  • Hafez, M., A. I. Popov, and M. Rashad. 2020a. Evaluation of the effects of new environmental additives compared to mineral fertilizers on the leaching characteristics of some anions and cations under greenhouse plant growth of saline-sodic soils. The Open Agriculture Journal 14 (1):246–56. doi:10.2174/1874331502014010246.
  • Hafez, M., A. I. Popov, and M. Rashad. 2021. Integrated use of bio-organic fertilizers for enhancing soil fertility–plant nutrition, germination status and initial growth of corn (Zea Mays L.). Environmental Technology & Innovation 21:101329. doi:10.1016/j.eti.2020.101329.
  • Hafez, M., M. Rashad, and A. I. Popov. 2020b. The biological correction of agro-photosynthesis of soil plant productivity. Journal of Plant Nutrition 1–52. doi:10.1080/01904167.2020.1799008.
  • Hayat, R., S. Ali, U. Amara, R. Khalid, and I. Ahmed. 2010. Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology 60:579–98. doi:10.1007/s13213-010-0117-1.
  • Hu, Y., and U. Schmidhalter. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science 168 (4):541–49. doi:10.1002/jpln.200420516.
  • Kandeler, E., and H. Gerber. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils 6 (1):68–72. doi:10.1007/BF00257924.
  • Karagöz, K., F. Ateş, H. Karagöz, R. Kotan, and R. Çakmakçi. 2012. Characterization of plant growth-promoting traits of bacteria isolated from the rhizosphere of grapevine grown in alkaline and acidic soils. European Journal of Soil Biology 50:144–50. doi:10.1016/j.ejsobi.2012.01.007.
  • Liang, Q., H. Chen, Y. Gong, H. Yang, M. Fan, and Y. Kuzyakov. 2014. Effects of 15 years of manure and mineral fertilizers on enzyme activities in particle-size fractions in a North China Plain soil. European Journal of Soil Biology 60:112–19. doi:10.1016/j.ejsobi.2013.11.009.
  • Lordan, R., E. O’Keeffe, A. Tsoupras, and I. Zabetakis. 2019. Total, neutral, and polar lipids of brewing ingredients, by-products and beer: Evaluation of antithrombotic activities. Foods 8:171. doi:10.3390/foods8050171.
  • Luo, S., S. Wang, L. Tian, S. Shi, S. Xu, F. Yang, X. Li, Z. Wang, and C. Tian. 2018. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils. Geoderma 329:108–17. doi:10.1016/j.geoderma.2018.05.023.
  • Mader, P. 2002. Soil fertility and biodiversity in organic farming. Science (80-.) 296:1694–97. doi:10.1126/science.1071148.
  • Mahmoodabadi, M., N. Yazdanpanah, L. R. Sinobas, E. Pazira, and A. Neshat. 2013. Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile. Agricultural Water Management 120:30–38. doi:10.1016/j.agwat.2012.08.018.
  • Meena, M. D., R. K. Yadav, B. Narjary, G. Yadav, H. S. Jat, P. Sheoran, M. K. Meena, R. S. Antil, B. L. Meena, H. V. Singh, et al. 2019. Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review. Waste Management 84:38–53. doi:10.1016/j.wasman.2018.11.020.
  • Munns, R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment 25 (2):239–50. doi:10.1046/j.0016-8025.2001.00808.x.
  • Mussatto, S. I. 2014. Brewer’s spent grain: A valuable feedstock for industrial applications. Journal of the Science of Food and Agriculture 94:1264–75. doi:10.1002/jsfa.6486.
  • Mussatto, S. I., and I. C. Roberto. 2006. Chemical characterization and liberation of pentose sugars from brewer’s spent grain. Journal of Chemical Technology & Biotechnology 81:268–74. doi:10.1002/jctb.1374.
  • Nadeem, S. M., M. Ahmad, Z. A. Zahir, A. Javaid, and M. Ashraf. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances 32:429–48. doi:10.1016/j.biotechadv.2013.12.005.
  • Nassar, I., M. Rashad, E. Aboukila, and M. Hafez. 2014. Effect of beer industry wastes compost on some physical and chemical properties of a sandy soil. Journal of Agriculture and Environmental Sciences ISBN 1687-1464.
  • Normandin, V., J. Kotuby‐Amacher, and R. O. Miller. 1998. Modification of the ammonium acetate extractant for the determination of exchangeable cations in calcareous soils. Communications in Soil Science and Plant Analysis 29:1785–91. doi:10.1080/00103629809370069.
  • Ouyang, W., Y. Shan, F. Hao, S. Chen, X. Pu, and M. K. Wang. 2013. Soil & tillage research the effect on soil nutrients resulting from land use transformations in a freeze-thaw agricultural ecosystem. Soil and Tillage Research 132:30–38. doi:10.1016/j.still.2013.04.007.
  • Page, A. L., and R. H. D. R. K. Miller. 1982. Part 2. In Methods of soil analysis, ed. A. L. Page and R. H. D. R. K. Miller, 2nd ed. file:///C:/Users/DELL/Downloads/books-agronomymonogra-methodsofsoilan2-frontmatter.pdf.
  • Pii, Y., T. Mimmo, N. Tomasi, R. Terzano, S. Cesco, and C. Crecchio. 2015a. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils 51 (4):403–15. doi:10.1007/s00374-015-0996-1.
  • Pii, Y., A. Penn, R. Terzano, C. Crecchio, T. Mimmo, and S. Cesco. 2015b. Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiology and Biochemistry 87:45–52. doi:10.1016/j.plaphy.2014.12.014.
  • Qadir, M., A. Tubeileh, J. Akhtar, A. Larbi, P. S. Minhas, and M. A. Khan. 2008. Productivity enhancement of salt-affected environments through crop diversification. Land Degradation & Development 19 (4):429–53. doi:10.1002/ldr.853.
  • Rashad, M., S. Dultz, and G. Guggenberger. 2010. Dissolved organic matter release and retention in an alkaline soil from the Nile River Delta in relation to surface charge and electrolyte type. Geoderma 158:385–91. doi:10.1016/j.geoderma.2010.06.007.
  • Rashad, M., M. Hafez, M. Emran, E. N. Aboukila, and I. Nassar. 2016. Influence of environment-friendly organic wastes on the properties of sandy soil under growing zea mays L. in Arid regions. World Academy of Science, Engineering and Technology 10:588–94. doi:10.5281/zenodo.1126479.
  • Rath, K. M., and J. Rousk. 2015. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biology & Biochemistry 81:108–23. doi:10.1016/j.soilbio.2014.11.001.
  • Richards, L. A. 1954. Diagnosis and improvement of saline and alkali soils. Soil Science 78:154. doi:10.1097/00010694-195408000-00012.
  • Rojas-Tapias, D., A. Moreno-Galván, S. Pardo-Díaz, M. Obando, D. Rivera, and R. Bonilla. 2012. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology 61:264–72. doi:10.1016/j.apsoil.2012.01.006.
  • Sant’Anna, S. A. C., M. R. Martins, J. M. Goulart, S. N. Araújo, E. S. Araújo, M. Zaman, C. P. Jantalia, B. J. R. Alves, R. M. Boddey, and S. Urquiaga. 2018. Biological nitrogen fixation and soil N2O emissions from legume residues in an Acrisol in SE Brazil. Geoderma Regional 15:e00196. doi:10.1016/j.geodrs.2018.e00196.
  • Sastre-Conde, I., M. Carmen Lobo, R. Icela Beltrán-Hernández, and H. M. Poggi-Varaldo. 2015. Remediation of saline soils by a two-step process: Washing and amendment with sludge. Geoderma 247–248:140–50. doi:10.1016/j.geoderma.2014.12.002.
  • Scherer, H. W., D. J. Metker, and G. Welp. 2011. Effect of long-term organic amendments on chemical and microbial properties of a luvisol. Plant, Soil and Environment 57:513–18. doi:10.17221/3283-PSE.
  • Shi, S., L. Tian, F. Nasir, A. Bahadur, A. Batool, S. Luo, F. Yang, Z. Wang, and C. Tian. 2019. Response of microbial communities and enzyme activities to amendments in saline-alkaline soils. Applied Soil Ecology 135:16–24. doi:10.1016/j.apsoil.2018.11.003.
  • Shrivastava, P., and R. Kumar. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22 (2):123–31. doi:10.1016/j.sjbs.2014.12.001.
  • Soltanpour, P. N., and A. P. Schwab. 1977. A new soil test for simultaneous extraction of macro‐ and micro‐nutrients in alkaline soils. Communications in Soil Science and Plant Analysis 8:195–207. doi:10.1080/00103627709366714.
  • Trivedi, P., M. Delgado‐Baquerizo, T. C. Jeffries, C. Trivedi, I. C. Anderson, K. Lai, M. McNee, K. Flower, B. Pal Singh, D. Minkey, et al. 2017. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environmental Microbiology 19 (8):3070–86. doi:10.1111/1462-2920.13779.
  • Wang, X., and Q. S. Cai. 2006. Steel slag as an iron fertilizer for corn growth and soil improvement in a pot experiment1 1 project supported by the national natural science foundation of China (No. 30270800). Pedosphere 16:519–24. doi:10.1016/S1002-0160(06)60083-0.
  • Yu, -Y.-Y., S.-M. Li, J.-P. Qiu, J.-G. Li, Y.-M. Luo, and J.-H. Guo. 2019. Combination of agricultural waste compost and biofertilizer improves yield and enhances the sustainability of a pepper field. Journal of Plant Nutrition and Soil Science 182:560–69. doi:10.1002/jpln.201800223.
  • Zarea, M. J., S. Hajinia, N. Karimi, E. Mohammadi Goltapeh, F. Rejali, and A. Varma. 2012. Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry 45:139–46. doi:10.1016/j.soilbio.2011.11.006.
  • Zhang, H., M.-S. Kim, Y. Sun, S. E. Dowd, H. Shi, and P. W. Paré. 2008. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions® 21 (6):737–44. doi:10.1094/MPMI-21-6-0737.
  • Zhang, T., T. Wang, K. Liu, L. Wang, K. Wang, and Y. Zhou. 2015. Effects of different amendments for the reclamation of coastal saline soil on soil nutrient dynamics and electrical conductivity responses. Agricultural Water Management 159:115–22. doi:10.1016/j.agwat.2015.06.002.
  • Zhang, W. W., C. Wang, R. Xue, and L. J. Wang. 2019. Effects of salinity on the soil microbial community and soil fertility. Journal of Integrative Agriculture 18:1360–68. doi:10.1016/S2095-3119(18)62077-5.
  • Zhao, Y., S. Wang, Y. Li, J. Liu, Y. Zhuo, H. Chen, J. Wang, L. Xu, and Z. Sun. 2018. Extensive reclamation of saline-sodic soils with flue gas desulfurization gypsum on the Songnen Plain, Northeast China. Geoderma 321:52–60. doi:10.1016/j.geoderma.2018.01.033.
  • Zhen, Z., H. Liu, N. Wang, L. Guo, J. Meng, N. Ding, G. Wu, and G. Jiang. 2014. Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLoS One 9. doi:10.1371/journal.pone.0108555.
  • Zhuang, X., J. Chen, H. Shim, and Z. Bai. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International 33:406–13. doi:10.1016/j.envint.2006.12.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.