1,015
Views
17
CrossRef citations to date
0
Altmetric
Review

Review on Mechanisms of Phosphate Solubilization in Rock Phosphate Fertilizer

, , & ORCID Icon
Pages 944-960 | Received 03 May 2021, Accepted 23 Jun 2021, Published online: 07 Feb 2022

References

  • Abouzeid, A.-Z. M. 2008. Physical and thermal treatment of phosphate ores—an overview. International Journal of Mineral Processing 85 (4):59–84.
  • Abouzeid, A., A. Khazback, and S. Hassan (1996). Upgrading of phosphate ores by electrostatic separation Changing Scopes in Mineral Processing, Netherland (pp. 161–170): Balkema.
  • Adams, F. 1980. Interactions of phosphorus with other elements in soils and in plants. In The role of phosphorus in agriculture. American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America Inc, 655–680.
  • Al-Kattan, A., S. Girod-Fullana, C. Charvillat, H. Ternet-Fontebasso, P. Dufour, J. Dexpert-Ghys, … J. Bernad. 2012. Biomimetic nanocrystalline apatites: Emerging perspectives in cancer diagnosis and treatment. International Journal of Pharmaceutics 423 (1):26–36.
  • Anazia, I., and J. Hanna (1990). Sequential separation of carbonate and siliceous gangue minerals during phosphate ore processing Advances in Fine Particles Processing, Boston, MA (pp. 357–67): Springer.
  • Anderson, D., W. Kussow, and R. Corey. 1985. Phosphate rock dissolution in soil: Indications from plant growth studies. Soil Science Society of America Journal 49 (4):918–25.
  • Awasthi, R., R. Tewari, and H. Nayyar. 2011. Synergy between plants and P-solubilizing microbes in soils: Effects on growth and physiology of crops. International Research Journal of Microbiology 2 (12):484–503.
  • Balassa, L. L. (1964). Stable metal chelate preparations: Google Patents.
  • Bar-Yosef, B., R. Rogers, J. Wolfram, and E. Richman. 1999. Pseudomonas cepacia–mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Science Society of America Journal 63 (6):1703–08.
  • Barralet, J. E., M. Tremayne, K. J. Lilley, and U. Gbureck. 2005. Modification of calcium phosphate cement with α-hydroxy acids and their salts. Chemistry of Materials 17 (6):1313–19.
  • Barrow, N. 1980. Evaluation and utilization of residual phosphorus in soils. In The role of phosphorus in agriculture. American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America Inc., 333–359.
  • Barton, C. J. 1948. Photometric analysis of phosphate rock. Analytical Chemistry 20 (11):1068–73.
  • Behera, B., S. K. Singdevsachan, R. Mishra, S. Dutta, and H. Thatoi. 2014. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review. Biocatalysis and Agricultural Biotechnology 3 (2):97–110.
  • Bolan, N. S., R. Naidu, S. Mahimairaja, and S. Baskaran. 1994. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biology and Fertility of Soils 18 (4):311–19.
  • Bolan, N., R. White, and M. Hedley. 1990. A review of the use of phosphate rocks as fertilizers for direct application in Australia and New Zealand. Australian Journal of Experimental Agriculture 30 (2):297–313.
  • Caro, J., and W. Hill. 1956. Fertilizer Characteristics, Characteristics and Fertilizer Value of Phosphate Rock from Different Fields. Journal of Agricultural and Food Chemistry 4 (8):684–87.
  • Cerezine, P. C., E. Nahas, and D. A. Banzatto. 1988. Soluble phosphate accumulation by Aspergillus Niger from fluorapatite. Applied Microbiology and Biotechnology 29 (5):501–05.
  • Chen, S., Y. Zhu, and Y. Ma. 2006. The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Materials 134 (1–3):74–79.
  • Ciccu, R., C. Delfa, G. Alfanu, P. Carbini, L. Currelli, and P. Saba (1972). Some tests of the electrostatic separation applied to phosphates with carbonate gangue. Paper presented at the Proceedings of the International Mineral Processing Congress, University of Cagliari, Cagliari, Italy.
  • Cunningham, J. E., and C. Kuiack. 1992. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Applied and Environmental Microbiology 58 (5):1451–58.
  • Dean, L. A. 1949. Fixation of soil phosphorus Advances in agronomy. Vol. 1, 391–411. Academic Press: Elsevier
  • Degli Esposti, L., A. Adamiano, A. Tampieri, G. B. Ramirez-Rodriguez, D. Siliqi, C. Giannini, … J. M. Delgado-López. 2020. Combined effect of citrate and fluoride ions on hydroxyapatite nanoparticles. Crystal Growth & Design 20 (5):3163–72.
  • Delgado-López, J. M., M. Iafisco, I. Rodríguez, A. Tampieri, M. Prat, and J. Gómez-Morales. 2012. Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomaterialia 8 (9):3491–99.
  • Delgado‐López, J. M., R. Frison, A. Cervellino, J. Gómez‐Morales, A. Guagliardi, and N. Masciocchi. 2014. Crystal Size, Morphology, and Growth Mechanism in Bio‐Inspired Apatite Nanocrystals. Advanced Functional Materials 24 (8):1090–99.
  • Dorozhkin, S. V. 2010. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomaterialia 6 (3):715–34.
  • El-Arabi, A. E.-G. M., and I. H. Khalifa. 2002. Application of multivariate statistical analyses in the interpretation of geochemical behaviour of uranium in phosphatic rocks in the Red Sea, Nile Valley and Western Desert, Egypt. Journal of Environmental Radioactivity 61 (2):169–90.
  • El-Jallad, I., A.-Z. Abouzeid, and H. El-Sinbawy. 1980. Calcination of phosphates: Reactivity of calcined phosphate. Powder Technology 26 (2):187–197.
  • Engelstad, O., and G. Terman. 1980. Agronomic effectiveness of phosphate fertilizers. In The role of phosphorus in agriculture. American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America Inc., 311–32.
  • Fahami, A., B. Nasiri-Tabrizi, G. W. Beall, and B. Pingguan-Murphy. 2015. Effect of ion concentration on mechanosynthesis of carbonated chlorapatite nanopowders. Materials Letters 146:16–19.
  • Ferraz, M., F. Monteiro, and C. Manuel. 2004. Hydroxyapatite nanoparticles: A review of preparation methodologies. Journal of Applied Biomaterials and Biomechanics 2 (2):74–80.
  • Filgueiras, M., D. Mkhonto, and N. D. de Leeuw. 2006. Computer simulations of the adsorption of citric acid at hydroxyapatite surfaces. Journal of Crystal Growth 294 (1):60–68.
  • Fixen, P., and J. Grove. 1990. Testing soils for phosphorus. Soil Testing and Plant Analysis 3:141–80.
  • Freeman, H., J. Caro, and N. Heinly. 1964. Fertilizer Materials, Effect of Calcination on Character of Phosphate Rock. Journal of Agricultural and Food Chemistry 12 (6):479–86.
  • Gadd, G. M. 1999. Fungal production of citric and oxalic acid: Importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology 41:47–92.
  • Garcia, C., T. Hernandez, F. Costa, B. Ceccanti, and G. Masciandaro. 1993. Kinetics of phosphatase activity in organic wastes. Soil Biology and Biochemistry 25 (5):561–65.
  • Gerretsen, F. 1948. The influence of microorganisms on the phosphate intake by the plant. Plant and Soil 1 (1):51–81.
  • Goldstein, A. H. 1986. Bacterial solubilization of mineral phosphates: Historical perspective and future prospects. American Journal of Alternative Agriculture 1 (2) 51–57.
  • Goldstein, A. H. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biological Agriculture & Horticulture 12 (2):185–93.
  • Goossen, J., and J. Kloosterboer. 1978. Determination of phosphates in natural and waste waters after photochemical decomposition and acid hydrolysis of organic phosphorus compounds. Analytical Chemistry 50 (6):707–11.
  • Grant, C., S. Bittman, M. Montreal, C. Plenchette, and C. Morel. 2005. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development. Canadian Journal of Plant Science 85 (1):3–14.
  • Greaves, M., and D. Webley. 1965. A study of the breakdown of organic phosphates by micro‐organisms from the root region of certain pasture grasses. Journal of Applied Bacteriology 28 (3):454–65.
  • Grover, R. 2003. Rock phosphate and phosphate solubilizing microbes as a source of nutrients for crops. Thapar Institute of Engineering and Technology 37 (1):1–51.
  • Gügi, B., N. Orange, F. Hellio, J. Burini, C. Guillou, F. Leriche, and J. Guespin-Michel. 1991. Effect of growth temperature on several exported enzyme activities in the psychrotrophic bacterium Pseudomonas fluorescens. Journal of Bacteriology 173 (12):3814–20.
  • Gunaratne, G., N. Kottegoda, N. Madusanka, I. Munaweera, C. Sandaruwan, W. Priyadarshana, and V. Karunaratne. 2016. Two new plant nutrient nanocomposites based on urea coated hydroxyapatite: Efficacy and plant uptake. In Indian J. Agric. Sci, 86, 4. Indian Council of Agricultural Research.
  • Gurdeep, K., and M. S. Reddy. 2015. Effects of phosphate-solubilizing bacteria, rock phosphate and chemical fertilizers on maize-wheat cropping cycle and economics. Pedosphere 25 (3):428–37.
  • Haynes, R. 1982. Effects of liming on phosphate availability in acid soils. Plant and Soil 68 (3):289–308.
  • He, Z., W. Bian, and J. Zhu. 2002. Screening and identification of microorganisms capable of utilizing phosphate adsorbed by goethite. Communications in Soil Science and Plant Analysis 33 (5–6):647–63.
  • He, Z., H. Yao, D. Calvert, P. Stoffella, X. Yang, G. Chen, and G. Lloyd. 2005. Dissolution characteristics of central Florida phosphate rock in an acidic sandy soil. Plant and Soil 273 (1):157–66.
  • Hedley, M., J. Stewart, and B. Chauhan. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal 46 (5):970–76.
  • Hilman, Y., M. H. Musa, A. A. Rahim, A. Hashim, and J. S. Adiningsih. 2016. Characteristics of phosphate rock materials from China, Indonesia and Tunisia and their dissolution in Indonesian acid soils. Indonesian Journal of Agricultural Science.
  • Hinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil 237 (2):173–95.
  • Hu, -Y.-Y., A. Rawal, and K. Schmidt-Rohr (2010). Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proceedings of the national academy of sciences, 107( 52), 22425–29.
  • Illmer, P., and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biology and Biochemistry 24 (4):389–95.
  • Illmer, P., and F. Schinner. 1995. Solubilization of inorganic calcium phosphates—solubilization mechanisms. Soil Biology and Biochemistry 27 (3):257–63.
  • Ivanova, R. P., D. Y. Bojinova, I. N. Gruncharov, and D. L. Damgaliev. 2006. The solubilization of rock phosphate by organic acids. Phosphorus, Sulfur, and Silicon and the Related Elements 181 (11):2541–54.
  • Jahnke, R. 1992. Global biogeochemical cycles. The Phosphorus Cycle. San Diego: Academic Press, Lewis Publ. Boca Raton, FL 313:301–15.
  • Jiao, W., W. Chen, A. C. Chang, and A. L. Page. 2012. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environmental Pollution 168:44–53.
  • Kaljuvee, T., R. Kuusik, and M. Veiderma. 1995. Enrichment of carbonate-phosphate ores by calcination and air separation. International Journal of Mineral Processing 43 (1–2):113–21.
  • Katznelson, H., E. Peterson, and J. Rouatt. 1962. Phosphate-dissolving microorganisms on seed and in the root zone of plants. Canadian Journal of Botany 40 (9):1181–86.
  • Kermani, Z. J., A. Shpigelman, C. Kyomugasho, S. Van Buggenhout, M. Ramezani, A. M. Van Loey, and M. E. Hendrickx. 2014. The impact of extraction with a chelating agent under acidic conditions on the cell wall polymers of Mango peel. Food Chemistry 161:199–207.
  • Khan, M. S., A. Zaidi, M. Ahemad, M. Oves, and P. A. Wani. 2010. Plant growth promotion by phosphate solubilizing fungi–current perspective. Archives of Agronomy and Soil Science 56 (1):73–98.
  • Khasawneh, F., and E. Doll. 1979. The use of phosphate rock for direct application to soils Advances in agronomy. Vol. 30, 159–206. Academic Press: Elsevier
  • Kim, D.-W., and S.-G. Oh. 2005. Agglomeration behavior of chromia nanoparticles prepared by amorphous complex method using chelating effect of citric acid. Materials Letters 59 (8–9):976–80.
  • Kirchner, M. J., A. Wollum, and L. King. 1993. Soil microbial populations and activities in reduced chemical input agroecosystems. Soil Science Society of America Journal 57 (5):1289–95.
  • Kirk, G., E. Santos, and M. Santos. 1999. Phosphate solubilization by organic anion excretion from rice growing in aerobic soil: Rates of excretion and decomposition, effects on rhizosphere pH and effects on phosphate solubility and uptake. New Phytologist 142 (2):185–200.
  • Klaic, R., R. Kaneko, C. de Oliveira, T. C. Zangirolami, and C. S. Farinas (2017). Solubilization of phosphate rock by organic acids. Paper presented at the Embrapa Instrumentação-Artigo em anais de congresso (ALICE), Aracaju, SE.
  • Kottegoda, N., I. Munaweera, N. Madusanka, and V. Karunaratne. 2011. A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science 101: 73–78.
  • Kottegoda, N., I. Munaweera, N. Madusanka, D. Sirisena, N. Dissanayake, G. A. Amaratunga, and V. Karunaratne. 2012. The Advent of Nanotechnology in Smart Fertilizer. In World Agriculture. World Agric, 3, 5.
  • Kottegoda, N., C. Sandaruwan, P. Perera, N. Madusanka, and V. Karunaratne. 2014. Modified layered nanohybrid structures for the slow release of urea. Nanoscience & Nanotechnology-Asia 4 (2):94–102.
  • Kottegoda, N., C. Sandaruwan, G. Priyadarshana, A. Siriwardhana, U. A. Rathnayake, D. M. Berugoda Arachchige, … G. A. Amaratunga. 2017. Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11 (2):1214–21.
  • Kpomblekou-a, K., and M. Tabatabai. 1994. Effect of organic acids on release of phosphorus from phosphate rocks1. Soil Science 158 (6):442–53.
  • Kremer, R. J. 1994. Determination of soil phosphatase activity using a microplate method. Communications in Soil Science and Plant Analysis 25 (3–4):319–25.
  • Kumari, A., K. Kapoor, B. Kundu, and R. Kumari Mehta. 2008. Identification of organic acids produced during rice straw decomposition and their role in rock phosphate solubilization. Plant Soil and Environment 54 (2):72.
  • Le Mare, P. 1991. Rock phosphates in agriculture. Experimental Agriculture 27 (4):413–22.
  • Lefires, H., H. Medini, A. Megriche, and A. Mgaidi. 2014. Dissolution of calcareous phosphate rock from Gafsa (Tunisia) using dilute phosphoric acid solution. International Journal of Nonferrous Metallurgy 3.
  • Lin, K., C. Wu, and J. Chang. 2014. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomaterialia 10 (10):4071–102.
  • Madhusha, C., I. Munaweera, V. Karunaratne, and N. Kottegoda. 2020. Facile Mechanochemical Approach To Synthesizing Edible Food Preservation Coatings Based On Alginate/Ascorbic Acid-Layered Double Hydroxide Bio-Nanohybrids. Journal of Agricultural and Food Chemistry 68 (33):8962–75.
  • Madhusha, C., K. Rajapaksha, I. Munaweera, M. de Silva, C. Perera, G. Wijesinghe, … N. Kottegoda. 2021. A Novel Green Approach to Synthesize Curcuminoid-Layered Double Hydroxide Nanohybrids: Adroit Biomaterials for Future Antimicrobial Applications. ACS Omega 6 (14):9600–08.
  • Madusanka, N., C. Sandaruwan, N. Kottegoda, D. Sirisena, I. Munaweera, A. De Alwis, … G. A. Amaratunga. 2017. Urea–hydroxyapatite-montmorillonite nanohybrid composites as slow release nitrogen compositions. Applied Clay Science 150:303–08.
  • Mardad, I., A. Serrano, and A. Soukri. 2013. Solubilization of inorganic phosphate and production of organic acids by bacteria isolated from a Moroccan mineral phosphate deposit. African Journal of Microbiology Research 7 (8):626–35.
  • McClellan, G. H., and J. R. Lehr. 1969. Crystal chemical investigation of natural apatites. American Mineralogist: Journal of Earth and Planetary Materials 54 (9–10):1374–91.
  • McLaughlin, M. J., T. M. McBeath, R. Smernik, S. P. Stacey, B. Ajiboye, and C. Guppy. 2011. The chemical nature of P accumulation in agricultural soils—implications for fertiliser management and design: An Australian perspective. Plant and Soil 349 (1):69–87.
  • Mittal, V., O. Singh, H. Nayyar, J. Kaur, and R. Tewari. 2008. Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biology and Biochemistry 40 (3):718–27.
  • Narsian, V., and H. Patel. 2000. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology and Biochemistry 32 (4):559–65.
  • Nathan, Y. 1984. The mineralogy and geochemistry of phosphorites Phosphate minerals, 275–91. Berlin, Heidelberg: Springer.
  • Neuman, W., and M. Neuman. 1953. The nature of the mineral phase of bone. Chemical Reviews 53 (1):1–45.
  • Newcomb, C. J., R. Bitton, Y. S. Velichko, M. L. Snead, and S. I. Stupp. 2012. The role of nanoscale architecture in supramolecular templating of biomimetic hydroxyapatite mineralization. Small 8 (14):2195–202.
  • Ngo, T.-N., and N. Hayek. 2017. Necessary conditions of Pareto optimality for multiobjective optimal control problems under constraints. Optimization 66 (2):149–77.
  • Nying, C., and S. Robinson. 2006. Factors Influencing the Dissolution of Phosphate Rock in a Range of High P‐Fixing Soils from Cameroon. Communications in Soil Science and Plant Analysis 37 (15–20):2627–45.
  • Phosphate, R. 2018. Application of Different Organic Acids on Phosphorus Solubility from. Journal of Horticulture and Plant Research 2: 43.
  • Pierzynski, G. M. 1991. The chemistry and mineralogy of phosphorus in excessively fertilized soils. Critical Reviews in Environmental Science and Technology 21 (3–4):265–95.
  • Raghu, K., and I. MacRae. 1966. Occurrence of Phosphate‐dissolving Micro‐organisms in the Rhizosphere of Rice Plants and in Submerged Soils. Journal of Applied Bacteriology 29 (3):582–86.
  • Raguraj, S., W. Wijayathunga, G. Gunaratne, R. Amali, G. Priyadarshana, C. Sandaruwan, … N. Kottegoda. 2020. Urea–hydroxyapatite nanohybrid as an efficient nutrient source in Camellia sinensis (L.) Kuntze (tea). Journal of Plant Nutrition 43 (15):2383–94.
  • Rajan, S., M. Brown, M. Boyes, and M. Upsdell. 1992. Extractable phosphorus to predict agronomic effectiveness of ground and unground phosphate rocks. Fertilizer Research 32 (3):291–302.
  • Rashid, M., S. Khalil, N. Ayub, S. Alam, and F. Latif. 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Sciences 7 (2):187–96.
  • Rautaray, H., R. Dash, and S. Mohanty. 1995. Phosphorus supplying power of some thermally promoted reaction products of phosphate rocks. Fertilizer Research 41 (1):67–75.
  • Reyes, I., L. Bernier, and H. Antoun. 2002. Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microbial Ecology 44 (1):39–48.
  • Rinu, K., and A. Pandey. 2010. Temperature-dependent phosphate solubilization by cold-and pH-tolerant species of Aspergillus isolated from Himalayan soil. Mycoscience 51 (4):263–71.
  • Rivaie, A., P. Loganathan, J. Graham, R. Tillman, and T. Payn. 2008. Effect of phosphate rock and triple superphosphate on soil phosphorus fractions and their plant-availability and downward movement in two volcanic ash soils under Pinus radiata plantations in New Zealand. Nutrient Cycling in Agroecosystems 82 (1):75–88.
  • Saber, W., K. Ghanem, and M. El-Hersh. 2009. Rock phosphate solubilization by two isolates of Aspergillus Niger and Penicillium sp. and their promotion to mung bean plants. Research Journal of Microbiology 4 (7):235–50.
  • Sadat-Shojai, M., M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi. 2013. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia 9 (8):7591–621.
  • Sakhno, Y., P. Ivanchenko, M. Iafisco, A. Tampieri, and G. Martra. 2015. A step toward control of the surface structure of biomimetic hydroxyapatite nanoparticles: Effect of carboxylates on the {010} P-rich/Ca-rich facets ratio. The Journal of Physical Chemistry C 119 (11):5928–37.
  • Salih, H., A. Yahya, A. Abdul-Rahem, and B. Munam. 1989. Availability of phosphorus in a calcareous soil treated with rock phosphate or superphosphate as affected by phosphate-dissolving fungi. Plant and Soil 120 (2):181–85.
  • Samavini, R., C. Sandaruwan, M. De Silva, G. Priyadarshana, N. Kottegoda, and V. Karunaratne. 2018. Effect of citric acid surface modification on solubility of hydroxyapatite nanoparticles. Journal of Agricultural and Food Chemistry 66 (13):3330–37.
  • Sanchez, P. A., and G. Uehara. 1980. Management considerations for acid soils with high phosphorus fixation capacity. In The role of phosphorus in agriculture, 471–514. American Society of Agronomy.
  • Sanyal, S., and S. De Datta. 1991. Chemistry of phosphorus transformations in soil Advances in soil science, 1–120. New York: Springer.
  • Schiemenz, K., and B. Eichler-Löbermann. 2010. Biomass ashes and their phosphorus fertilizing effect on different crops. Nutrient Cycling in Agroecosystems 87 (3):471–82.
  • Shapiro, L. (1952). Simple field method for the determination of phosphate in phosphate rocks: Mineralogical Society of America.
  • Sharma, S., V. Kumar, and R. B. Tripathi. 2011. Isolation of phosphate solubilizing microorganism (PSMs) from soil. Journal of Microbiology and Biotechnology Research 1 (2):90–95.
  • Silvia, A., and P. Andery. 1972. Mining and beneficiation of apatite rock at the Jacupiranga mine, Brazil. Phosphorus & Potassium 57:37–40.
  • Singh, C., and A. Amberger. 1998. Organic acids and phosphorus solubilization in straw composted with rock phosphate. Bioresource Technology 63 (1):13–16.
  • Sperber, J. I. 1958a. The incidence of apatite-solubilizing organisms in the rhizosphere and soil. Australian Journal of Agricultural Research 9 (6):778–81.
  • Sperber, J. I. 1958b. Solution of apatite by soil microorganisms producing organic acids. Australian Journal of Agricultural Research 9 (6):782–87.
  • Stribley, D., P. Tinker, and J. Rayner. 1980. Relation of internal phosphorus concentration and plant weight in plants infected by vesicular‐arbuscular mycorrhizas. New Phytologist 86 (3):261–66.
  • Syers, J. K., A. D. Mackay, M. W. Brown, and L. D. Currie. 1986. Chemical and physical characteristics of phosphate rock materials of varying reactivity. Journal of the Science of Food and Agriculture 37 (11):1057–64.
  • Takeda, M., and J. Knight. 2006. Enhanced solubilization of rock phosphate by Penicillium bilaiae in pH-buffered solution culture. Canadian Journal of Microbiology 52 (11):1121–29.
  • Van der Paauw, F. 1965. Factors controlling the efficiency of rock phosphates for potatoes and rye on humic sandy soils. Plant and Soil 22: 81–98.
  • van Diest, A. 1981. Rock-phosphate mobilization induced by the alkaline uptake pattern of legumes utilizing symbiotically fixed nitrogen. Plant and Soil 61 (1):27–42.
  • Wang, A., H. Yin, D. Liu, H. Wu, M. Ren, T. Jiang, … Y. Xu. 2007. Size-controlled synthesis of hydroxyapatite nanorods in the presence of organic modifiers. Materials Letters 61 (10):2084–88.
  • Wier, D., S. Chien, and C. Black. 1971. Solubility of hydroxyapatite. Soil Science 111 (2):107–12.
  • Xiao, C., H. Zhang, Y. Fang, and R. Chi. 2013. Evaluation for rock phosphate solubilization in fermentation and soil–plant system using a stress-tolerant phosphate-solubilizing Aspergillus Niger WHAK1. Applied Biochemistry and Biotechnology 169 (1):123–33.
  • Zahran, H. H. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews 63 (4):968–89.
  • Zipkin, I., and R. Gold (1963). The citrate content of teeth. Proceedings of the Society for Experimental Biology and Medicine, 113 ( 3): 580–84.
  • Zoysa, A., P. Loganathan, and M. Hedley. 1998. Phosphate rock dissolution and transformation in the rhizosphere of tea (Camellia sinensis L.) compared with other plant species. European Journal of Soil Science 49 (3):477–86.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.