330
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Biofertilizing Effects of Anabaena cylindrica Biomass on the Growth and Nitrogen Uptake of Wheat

ORCID Icon, , , , , & show all
Pages 1216-1225 | Received 26 Feb 2021, Accepted 18 Jan 2022, Published online: 18 Feb 2022

References

  • Asari, N., R. Ishihara, Y. Nakajima, M. Kimura, and S. Asakawa. 2008. Cyanobacterial communities of rice straw left on the soil surface of a paddy field. Biol. Fertil. Soils 44:605–12.
  • Babu, S., R. Prasanna, N. Bidyarani, and R. Singh. 2014. Analyzing the colonization of inoculated cyanobacteria in wheat plants using biochemical and molecular tools. J. Appl. Phycol 27:327–38.
  • Bittencourt-Oliveira, M. D. C., M. K. Cordeiro-Araújo, M. A. Chia, J. D. D. T. Arruda-Neto, Ê. T. D. de Oliveira, and F. Dos Santos. 2016. Lettuce irrigated with contaminated water: Photosynthetic effects, antioxidative response and bioaccumulation of microcystin congeners. Ecotoxicology and Environmental Safety 128:83–90. doi:https://doi.org/10.1016/j.ecoenv.2016.02.014.
  • Boghdady, M. S., and S. A. Ali. 2013. Comparison between effect of Azospirillum brasilense and Anabaena oryzae on growth, yield and anatomical characters of wheat plants. J. Appl. Sci. Res 9:627–37.
  • Carlile, W., C. Cattivello, and P. Zaccheo. 2015. Organic growing media: Constituents and properties. Vadose Zone Journal 14 (6):1–13. doi:https://doi.org/10.2136/vzj2014.09.0125.
  • Choudhury, A. T. M., and I. R. Kennedy. 2005. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Communications in Soil Science and Plant Analysis 36 (11–12):1625–39. doi:https://doi.org/10.1081/CSS-200059104.
  • Dias, F., J. T. Antunes, T. Ribeiro, J. Azevedo, V. Vasconcelos, and P. N. Leão. 2017. Cyanobacterial allelochemicals but not cyanobacterial cells markedly reduce microbial community diversity. Frontiers in Microbiology 8:1495. doi:https://doi.org/10.3389/fmicb.2017.01495.
  • Fageria, N. K., and A. Moreira. 2011. The role of mineral nutrition on root growth of crop plants. Adv. Agron 110:251–331.
  • Figueiredo, D. R., A. Alves, M. J. Pereira, and A. Correia. 2010. Molecular characterization of bloom-forming Aphanizomenon strains isolated from Vela Lake (Western Central Portugal). PortugalJournal of Plankton Research 32 (2):239–52. doi:https://doi.org/10.1093/plankt/fbp111.
  • Flynn, K. J., and J. R. Gallon. 1990. Changes in intracellular and extracellular ?-amino acids in Gloeothece during N2-fixation and following addition of ammonium. Archives of Microbiology 153 (6):574–79. doi:https://doi.org/10.1007/BF00245267.
  • Gantar, M., N. Kerby, P. Rowell, Z. Obreht, and C. Scrimgeour. 1995. Colonization of wheat (Triticum vulgare L.) by N 2 -fixing cyanobacteria. New Phytologist 129 (2):337–43. doi:https://doi.org/10.1111/j.1469-8137.1995.tb04304.x.
  • Gavilanes, F. Z., D. S. Andrade, C. Zucareli, E. H. Horácio, J. S. Yunes, A. P. Barbosa, L. A. Ribeiro Alves, L. G. Cruzatti, N. R. Maddela, and M. de Fátima Guimarães. 2020. Co-inoculation of Anabaena cylindrica with Azospirillum brasilense increases maize grain yield. Rhizosphere 15: 100224. doi:https://doi.org/10.1016/j.rhisph.2020.100224.
  • Indira, P., and R. N. Biswajit. 2012. Commercial and industrial applications of microalgae. J. Algal Biomass Utln 3:89–100.
  • Jeffries, D. L., J. M. Klopatek, S. O. Link, and H. J. Bolton. 1992. Acetylene reduction by cryptogamic crusts from a blackbrush community as related to resaturation and dehydration. Soil Biol. Biochem 24:1101–05.
  • Jia, Y., H. Li, Y. Qu, W. Chen, and L. Song. 2018. Phytotoxicity, bioaccumulation and potential risks of plant irrigations using cyanobloom-loading freshwater. Sci. Total Environ 624:704–12.
  • Kholssi, R., A. N. M. Evan, O. Montero, A. Pascual, A. Debdoubi, and C. Rad. 2017. The growth of filamentous microalgae is increased on biochar solid supports. Biocat. Agric. Biotech 13:182–85.
  • Khushwaha, M., and M. Banerjee. 2015. A novel method of seed germination and growth of three staple crop plants: Effect of low temperature and cyanobacterial culture addition. J. Algal Biomass Utln 6:26–32.
  • Lange, O. L., A. Meyer, H. Zellner, and U. Heber. 1994. Photosynthesis and water relations of lichen soil crusts: Field measurements in the coastal fog zone of the Namib Desert. Funct. Ecol 8:253–64.
  • Leão, P. N., M. T. S. D. Vasconcelos, and V. M. Vasconcelos. 2009. Allelopathy in freshwater cyanobacteria. Crit. Rev. Microbiol 35:271–82.
  • Malam, I. O., L. Y. Bissonnais, C. Defarge, and J. Trichet. 2001. Role of a cyanobacterial cover on structural stability of sandy soils in the Sahalian part of western Niger. Geoderma 101:15–30.
  • Maqubela, M. P., P. N. S. Mnkeni, M. O. Issa, M. T. Pardo, and L. P. D’Acqui. 2009. Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility and maize growth. Plant and Soil 315:79–92.
  • Markou, G., D. Vandamme, and K. Muylaert. 2014. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research 65:186–202. doi:https://doi.org/10.1016/j.watres.2014.07.025.
  • Marks, E. A. N., J. Miñón, A. Pascual, O. Montero, L. M. Navas, and C. Rad. 2017. Application of a microalgal slurry to soil stimulates heterotrophic activity and promotes bacterial growth. Sci. Total Environ 605–606:610–17.
  • Montero, O., M. Velasco, A. Sanz-Arranz, and F. Rull. 2016. Effect of different broad waveband lights on membrane lipids of a cyanobacterium, Synechococcus sp., as determined by UPLC-QToF-MS and vibrational spectroscopy. Biology 5 (22):17.
  • Mulat, A., W. Girma, Y. Mekiso, Y. Solomon, W. Endalkachew, C. Alemayehu, and G. D. Jessica. 2019. Comparison of cyanobacterial bio-fertilizer with urea on three crops and two soils of Ethiopia. Afr. J. Agric. Res 14:588–96.
  • Nayak, S., R. Prasanna, A. Pabby, T. K. Dominic, and P. K. Singh. 2004. Effect of urea, blue green algae and Azolla on nitrogen fixation and chlorophyll accumulation in soil under rice. Biol. Fertil. Soils 40:67–72.
  • Obreht, Z., N. W. Kerby, M. Gantar, and P. Rowell. 1993. Effects of root-associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol. Fertil. Soils 15:68–72.
  • Oliveira, P., N. M. Martins, M. Santos, N. A. Couto, P. C. Wright, and P. Tamagnini. 2015. The anabaena sp. PCC 7120 exoproteome: taking a peek outside the box. Life (Basel) 5:130–63.
  • Prasanna, R., M. Joshi, A. Rana, and L. Nain. 2010. Modulation of IAA production in cyanobacteria by tryptophan and light. Pol. J. Microbiol 59:99–105.
  • Rai, M. K. 2006. Handbook of microbial biofertilizers. food products press, an imprint of the haworth press. Binghamton, New York: Inc.
  • Renuka, N., A. Guldhe, R. Prasanna, P. Singh, and F. Bux. 2018. Microalgae as multi-functional options in modern agriculture: Current trends, prospects and challenges. Biotechnol. Adv 36:1255–73.
  • Rizk, M. A. 2006. Growth activities of the sugarbeet pathogen Sclerotium rolfsii Sacc., Rhizoctonia solani Khun. and Fusarium verticilloides Sacc. under cyanobacterial filtrate stress. Plant Pathol. J 5:212–15.
  • Saly, F. G., and A. Gheda. 2015. Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc kihlmani and Anabaena cylindrica. Rend. Fis. Acc. Lincei 26:121–31.
  • SPSS Inc. 2009. PASW Statistics for Windows, Version 18.0. Chicago: SPSS Inc.
  • Stevenson, R. 1996. An introduction to algal ecology in freshwater benthic habitats. In Algal ecology: Freshwater benthic ecosystems, ed. R. J. Stevenson, M. L. Bothwell, and R. L. Lowe, 3–30. San Diego: Academic.
  • Subash, K. G., and P. C. Arka. 2020. Cyanobacterial Biofertilizer for sustainable agriculture and environment. Journal of Creative Research Thoughts 8:2320–882.
  • Tassara, C., M. C. Zaccaro, M. M. Storni, M. Palma, and G. Zulpa. 2008. Biological control of lettuce white mold with cyanobacteria. Int. J. Agric. Biol 10:487–92.
  • TMECC. 2002. Test methods for the examination of composting and composts. Holbrook, NY, USA: US Composting Council.
  • Whitton, B. A. 2000. Soils and rice-fields. In Ecology of cyanobacteria: their diversity in time and space, ed. B. A. Whitton and M. Potts, 233–55, Kluwer, Dordrecht.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.