760
Views
9
CrossRef citations to date
0
Altmetric
Review

Nanofertilizers for Development of Sustainable Agriculture

, &
Pages 1999-2016 | Received 12 Aug 2021, Accepted 31 Jan 2022, Published online: 26 Apr 2022

References

  • Abad, A., J. Lloveras, and A. Michelena. 2004. Nitrogen fertilization and foliar urea effects on durum wheat yield and quality and on residual soil nitrate in irrigated Mediterranean conditions. Field Crops Research 87 (2–3):257–69. doi:https://doi.org/10.1016/j.fcr.2003.11.007.
  • Adhikari, T., S. Kundu, A. K. Biswas, J. C. Tarafdar, and A. S. Rao. 2012. Effect of copper oxide nano particle on seed germination of selected crops. Journal of Agriculture, Science and Technology 2:815–23.
  • Adisa, I. O., S. Rawat, V. L. R. Pullagurala, C. O. Dimkpa, W. H. Elmer, J. C. White, J. A. Hernandez-Viezcas, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2020. Nutritional Status of Tomato (Solanum lycopersicum) Fruit Grown in Fusarium -Infested Soil: Impact of Cerium Oxide Nanoparticles. Journal of Agricultural and Food Chemistry 7 (7):1986–97. doi:https://doi.org/10.1021/acs.jafc.9b06840.
  • Al-Huqail, A., R. El-Dakak, M. Sanad, R. Badr, M. S. Ibrahim, and D. K. Faheema. 2020. Effects of climate temperature and water stress on plant growth and accumulation of antioxidant compounds in sweet basil (Ocimum basilicum L.) leafy vegetable. Scientifica 1:12.
  • Ali, A., H. Zafar, M. Zia, I. Ul Haq, A. R. Phull, J. S. Ali, and A. Hussain. 2016. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications 9:49. doi:https://doi.org/10.2147/NSA.S99986.
  • Aljutheri, H. W., K. H. Habeeb, F. Jawad, K. Altaee, D. K. Al-Taey, and A. R. Al-Tawaha. 2018. Effect of foliar application of different sources of nano-fertilizers on growth and yield of wheat. Bioscience Research 15:3988–97.
  • Alshaal, T., and H. R. El-Ramady. 2017. Foliar application: From plant nutrition to biofortification. The Environment, Biodiversity and Soil Security 1:71–83.
  • Andersen, C. P., G. King, M. Plocher, M. Storm, L. R. Pokhrel, M. G. Johnson, and P. T. Rygiewicz. 2016. Germination and earlyplant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environmental Toxicology and Chemistry 35 (9):2223–29. doi:https://doi.org/10.1002/etc.3374.
  • Awan, S., K. Shahzadi, S. Javad, A. Tariq, A. Ahmad, and S. Ilyas. 2021. A preliminary study of influence of zinc oxide nanoparticles on growth parameters of Brassica oleracea var italic. Journal of the Saudi Society of Agricultural Sciences 20 (1):18–24. doi:https://doi.org/10.1016/j.jssas.2020.10.003.
  • Bacilieri, F. S., A. C. Pereira de Vasconcelos, R. M. Quintao Lana, J. G. Mageste, and J. L. R. Torres. 2017. Titanium (Ti) in plant nutrition - A review. Australian Journal of Crop Science 11 (4):382–86. doi:https://doi.org/10.21475/ajcs.17.11.04.pne202.
  • Bansiwal, A. K., S. S. Rayalu, N. K. Labhasetwar, A. A. Juwarkar, and S. Devotta. 2006. Surfactant-modified zeolite as a slow release fertilizer for phosphorus. Journal of Agricultural and Food Chemistry 13 (13):4773–79. doi:https://doi.org/10.1021/jf060034b.
  • Boehm, A. L., I. Martinon, R. Zerrouk, E. Rump, and H. Fessi. 2003. Nano precipitation technique for the encapsulation of agrochemical active ingredients. Journal of Microencapsulation 20 (4):433–41. doi:https://doi.org/10.1080/0265204021000058410.
  • Brady, N. R., and R. R. Weil. 1999. The nature and properties of soils, 415–73. Upper Saddle River, NJ: Prentice Hall.
  • Burnside, S. D., V. Shklover, C. Barbe, P. Comte, F. Ardense, K. Brooks, and M. Gratzel. 1998. Self-organization of TiO2 nanoparticles in thin films. MRS Proceedings 10:2419–25.
  • Cakmak, I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. The New Phytologist 146 (2):185–205. doi:https://doi.org/10.1046/j.1469-8137.2000.00630.x.
  • Calabi-Floddy, M., J. Medina, C. Rumpel, L. M. Condron, M. D. Hernandez, and M. D. L. Luz Mora. 2018. Smart fertilizers as a strategy for sustainable agriculture. Advances in Agronomy 147:119–57.
  • Castiglione, M., L. Giorgetti, C. Geri, and R. Cremonini. 2011. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. Journal of Nanoparticle Research 13 (6):2443–49. doi:https://doi.org/10.1007/s11051-010-0135-8.
  • Chaudhary, I. J., and R. P. Singh. 2018. Studies on growth, mobilization of nutrients and yield of wheat (Triticum aestivum L. PBW-343) applied with organic matrix based slow release bio fertilizers. International Journal of Current Microbiology and Applied Sciences 7:3221–38.
  • Corradini, E., M. R. De Moura, and L. H. C. Mattoso. 2010. A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. eXPRESS Polymer Letters 4 (8):509–15. doi:https://doi.org/10.3144/expresspolymlett.2010.64.
  • Costa, M. V. J., and P. K. Sharma. 2016. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–19.
  • Cuevas, R., N. Durán, M. C. Diez, G. R. Tortella, and O. Rubilar. 2015. extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from chilean forests. Journal of Nanomaterials 1:1–7. doi:https://doi.org/10.1155/2015/789089.
  • Deng, F., S. Wang, and H. Xin. 2016. Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. Bulletin of Environmental Contamination and Toxicology 97 (5):702–08. doi:https://doi.org/10.1007/s00128-016-1934-0.
  • Dimkpa, C. O., and P. S. Bindraban. 2016. Fortification of micronutrients for efficient agronomic production: A review. Agronomy for Sustainable Development 36 (1):1–7. doi:https://doi.org/10.1007/s13593-015-0346-6.
  • Drostkar, E., R. Talebi, and H. Kanouni. 2016. Foliar application of Fe, Zn and NPK nano-fertilizers on seed yield and morphological traits in chickpea under rainfed condition. Journal of Research in Ecology 4:221–28.
  • Du, W., Y. Sun, R. Ji, J. Zhu, J. Wu, and H. Guo. 2011. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. Journal of Environmental Monitoring 13 (4):822–28. doi:https://doi.org/10.1039/c0em00611d.
  • Ebbs, S. D., S. J. Bradfield, P. Kumar, J. C. White, C. Musante, and X. Ma. 2016. Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environmental Science Nano 3 (1):114–26. doi:https://doi.org/10.1039/C5EN00161G.
  • Fujinuma, R., and N. J. Balster. 2010. Controlled-release nitrogen in tree nurseries. Research Communication 2:123–26.
  • Gao, F., F. Hong, C. Liu, L. Zheng, M. Su, X. Wu, F. Yang, C. Wu, and O. Yang. 2006. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: Inducing complex of rubisco-rubisco activase. Biological Trace Element Research 111 (1–3):239–53. doi:https://doi.org/10.1385/BTER:111:1:239.
  • Ghosh, M., M. Bandyopadhyay, and A. Mukherjee. 2010. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere 81 (10):1253–62. doi:https://doi.org/10.1016/j.chemosphere.2010.09.022.
  • Gui, X., Y. Q. Deng, Y. K. Rui, B. B. Gao, W. H. Luo, S. L. Chen, L. V. Nhan, X. G. Li, S. T. Liu, and Y. N. Han. 2015. Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (γFe2O3). Environmental Science and Pollution Research 22 (22):17716–23. doi:https://doi.org/10.1007/s11356-015-4976-7.
  • Hafeez, A., A. Razzaq, T. Mahmood, and H. M. Jhanzab. 2015. Potential of copper nanoparticles to increase growth and yield of wheat. Journal of Nanoscience with Advanced Technology 1 (1):6–11. doi:https://doi.org/10.24218/jnat.2015.02.
  • Hassan, S. A., A. M. E. Hagrassi, O. Hammam, A. M. Soliman, E. Ezzeldin, and W. M. Aziz. 2020. Brassica juncea L. (Mustard) extract silver nanoparticles and knocking off oxidative stress, proinflammatory cytokine and reverse DNA genotoxicity. Biomolecules 10 (12):1650. doi:https://doi.org/10.3390/biom10121650.
  • Hayyawi, W. A., M. N. Al-uthery, and Al-Shami. 2019. Impact of fertigation of nano NPK fertilizers, nutrient use efficiency and distribution in soil of potato (Solanum tuberosum L.). Plant Archives 19 (1):1087–96.
  • Heffer, P., and M. Prud’homme. 2012. Fertilizer Outlook. 77th IFA Annual Conference, Doha, 1–12.
  • Helal, M., R. Sami, E. Khojah, A. Elhakem, N. Benajiba, A. A. M. Al-Mushhin, and N. Fouda. 2021. Evaluating the coating process of titanium dioxide nanoparticles and sodium tripolyphosphate on cucumbers under chilling condition to extend the shelf-life. Scientific Reports 11 (1):20312. doi:https://doi.org/10.1038/s41598-021-99023-3.
  • Hernandez-Viezcas, J. A., H. Castillo-Michel, J. C. Andrews, M. Cotte, C. Rico, J. R. Peralta-Videa, Y. Ge, J. H. Priester, P. A. Holden, and J. L. Gardea-Torresdey. 2013. In situ synchrotron X-ray fluorescence mapping and speciation of CeO₂ and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7 (2):1415–23. doi:https://doi.org/10.1021/nn305196q.
  • Hong, J., C. M. Rico, L. Zhao, A. S. Adeleye, A. A. Keller, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2015. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environmental Science:Processes & Impacts 17:177–85.
  • Iqbal, M., N. I. Raja, Z. U. R. Mashwani, T. Sultana, M. Ejaz, and F. Yasmeen. 2019. Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transaction A: Science 43 (2):387–95. doi:https://doi.org/10.1007/s40995-017-0417-4.
  • Janmohammadi, M., T. Amanzadeh, N. Sabaghnia, and S. Dashti. 2016. Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica 107 (2):265–76. doi:https://doi.org/10.14720/aas.2016.107.2.01.
  • Jeyasubramanian, K., U. Ubendran, H. Sobhin, N. Selvakumar, S. Angaiah, and K. Krishnamoorthy. 2016. Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Advances 6:15451–15459.
  • Jhanzab, H. M., A. Razzaq, G. Jilani, A. Rehman, A. Hafeez, and F. Yasmeen. 2015. Silver nanoparticles enhance the growth, yield and nutrient use efficiency of wheat. International Journal of Agronomy and Agricultural Research 7:15–22.
  • Kim, D. Y., A. Kadam, S. Shinde, R. G. Saratale, J. Patra, and G. Ghodake. 2018. Recent developments in nanotechnology transforming the agricultural sector: A transition replete with opportunities. Journal of the Science of Food and Agriculture 98 (3):849–64. doi:https://doi.org/10.1002/jsfa.8749.
  • Kottegoda, N., C. Sandaruwan, G. Priyadarshana, A. Siriwardhana, U. A. Rathnayae, D. M. B. Arachchige, A. R. Kumarasinghe, D. Dahanayae, V. Karunarantne, and G. A. J. Amaratunga. 2017. Urea hydroxypatite nanohybrids for slow release of nitrogen. ACS Nano 11 (2):1214–21. doi:https://doi.org/10.1021/acsnano.6b07781.
  • Kumari, M., A. Mukherjee, and N. Chandrasekaran. 2009. Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment 15. 407 (19):5243–46. doi: https://doi.org/10.1016/j.scitotenv.2009.06.024.
  • Lai, F., S. A. Wissing, R. H. Muller, and A. M. Fadda. 2006. Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: Preparation and characterization. AAPS PharmSciTech 7 (1):1–9. doi:https://doi.org/10.1208/pt070102.
  • Lamsal, K. K., W. J. Sang, J. K. Yun, K. L. Kim, Kim, K. S. Youn, and Y. S. Lee. 2011. Application of silver nanoparticles for the control of Colletotrichum Species in vitro and Pepper Anthracnose disease in field. Mycobiology 39 (3):194–99. doi:https://doi.org/10.5941/MYCO.2011.39.3.194.
  • Lawre, S., and S. Raskar. 2014. Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. International Journal of Current Microbiology and Applied Sciences 3:874–81.
  • Lee, W. M., Y. J. An, H. Yoon, and H. S. Kweon. 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum astivum): plant agar test for wate-insoluble nanoparticles. Environmental Toxicology and Chemistry 27 (9):1915–21. doi:https://doi.org/10.1897/07-481.1.
  • Lin, D., and B. Xing. 2008. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution 150 (2):243–50. doi:https://doi.org/10.1016/j.envpol.2007.01.016.
  • Liu, X., Z. Feng, S. Zhang, J. Zhang, Q. Xiao, and Y. Wang. 2006. Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agricultural Sciences in China 5:700–06.
  • Liu, R. Q., H. Y. Zhang, and R. Lal. 2016. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: Nanotoxicants or nanonutrients? Water, Air, and Soil Pollution 227 (1):1–14. doi:https://doi.org/10.1007/s11270-015-2738-2.
  • Mahmoud, A. W. M., S. M. Abdelaziz, M. M. El-Mogy, and E. A. Abdeldaym. 2019. Effect of foliar Zno and Feo nanoparticles application on growth and nutritional quality of red radish and assessment of their accumulation on human health. Agriculture (Pol'nohospodárstvo) 65 (1): 16–29. doi:https://doi.org/10.2478/agri-2019-0002.
  • Manjunatha, S. B., D. P. Biradar, and Y. R. Aladakatti. 2016. Nanotechnology and its applications in agriculture: A review. Journal of Farm Sciences 29:1–3.
  • Martinez-Fernandez, D., D. Barroso, and M. Komare. 2016. Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environmental Science and Pollution Research 23 (2):1732–41. doi:https://doi.org/10.1007/s11356-015-5423-5.
  • McMaster, G. S. 1997. Phenology, development and growth of the wheat (Triticum aestivum L.) Shoot Apex: A review. Advances in Agronomy 59:63–118.
  • Mehrangiz, J. M., B. Sirous, and A. Ebrahim. 2014. Study the effect of foliar application of nano chelate molybdenum fertilizer on the yield and yield components of peanut. Biological Forum- An International Journal 6:37–40.
  • Mikolajewicz, N., and S. V. Komarova. 2019. Meta-analytic methodology for basic research: A practical guide. Frontiers in Physiology 10:203. doi:https://doi.org/10.3389/fphys.2019.00203.
  • Milani, N., M. J. McLaughlin, S. P. Stacey, J. K. Kirkby, G. M. Hettiarachchi, D. G. Beak, and G. Cornelis. 2012. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. Journal of Agricultural and Food Chemistry 60 (16):3991–98. doi:https://doi.org/10.1021/jf205191y.
  • Mirzajani, F., H. Askari, S. Hamzelou, M. Farzaneh, and A. Ghassempour. 2013. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicology and Environmental Safety 88:48–54. doi:https://doi.org/10.1016/j.ecoenv.2012.10.018.
  • Moghadam, A. L., H. Vattani, N. Baghaei, and N. Keshavarz. 2012. Effect of different levels of fertilizer nano_iron chelates on growth and yield characteristics of two varieties of spinach (Spinacia oleracea L.): Varamin 88 and Viroflay. Research Journal of Applied Sciences, Engineering and Technology 4:4813–18.
  • Monreal, C. M., M. DeRosa, S. C. Mallubhotla, P. S. Bindraban, and C. Dimkpa. 2015. Nanotechnologies for increasing the crop use efficiency of fertilizer micronutrients. Biology and Fertility of Soils 52 (3):423–37. doi:https://doi.org/10.1007/s00374-015-1073-5.
  • Moon, Y. S., E. S. Park, T. O. Kim, H. S. Lee, and S. E. Lee. 2014. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles. Envrionmental Toxicology and Pharmacology 38 (3):922–31. doi:https://doi.org/10.1016/j.etap.2014.10.002.
  • Morteza, E., P. Moaveni, H. A. Farahani, and M. Kiyani. 2013. Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2 (1):247. doi:https://doi.org/10.1186/2193-1801-2-247.
  • Mortvedt, J. J., and P. M. Giordano. 2002. Crop response to zinc oxide applied in liquid and granular fertilizers. Journal of Agricultural and Food Chemistry 15 (1):118–22. doi:https://doi.org/10.1021/jf60149a031.
  • Munir, T., R. Muhammad, M. A. Shahzad, A. Shafaqat, N. Amin, R. Zahid, M. Fakhar-e-alam, and I. Muhammad. 2018. Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Digest Journal of Nanomaterials and Biostructures 13:315–23.
  • Nair, P. G., and I. Chung. 2014. A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biological Trace Element Research 162 (1–3):342–52. doi:https://doi.org/10.1007/s12011-014-0106-5.
  • Nair, P. M. G., M. Chung, and I. M. Chung. 2014. Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: Physiological and molecular level responses of in vitro grown plants. Acta Physiologiae Plantarum 36 (11):2947–58. doi:https://doi.org/10.1007/s11738-014-1667-9.
  • Nair, R., S. H. Varghese, B. G. Nair, T. Maekawa, Y. Yoshida, and D. S. Kumar. 2010. Nanoparticulate material delivery to plants. Plant Science 179 (3):154–63. doi:https://doi.org/10.1016/j.plantsci.2010.04.012.
  • Nhan, L. V., R. Yukui, C. Weidong, S. Jianying, L. Liming, N. Q. Trung, and L. Liming. 2016. Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton. Journal of Plant Interactions 11 (1):108–16. doi:https://doi.org/10.1080/17429145.2016.1217434.
  • Nisar, S., S. Sadique, E. G. Kazerooni, U. Majeed, and M. R. Shehzad. 2019. Physical and chemical techniques to produce nano fertilizers. International. Journal of Chemical and Biochemical Sciences 15:50–57.
  • Parisi, C., M. Vigani, and E. Rodriguez-Cerezo. 2015. Agricultural Nanotechnologies: What are the current possibilities? Nano Today 10 (2):124–27. doi:https://doi.org/10.1016/j.nantod.2014.09.009.
  • Pestovsky, Y. S., and A. Martínez-Antonio. 2017. The use of nanoparticles and nanoformulations in agriculture. Journal of Nanoscience and Nanotechnology 17 (12):8699–730. doi:https://doi.org/10.1166/jnn.2017.15041.
  • Qureshi, A., D. K. Singh, and S. Dwivedi. 2018. Nano-fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiological and Applied Sciences 7 (2):3325–35. doi:https://doi.org/10.20546/ijcmas.2018.702.398.
  • Rahman, I. U., A. Afzal, Z. Iqbal, and S. Manan. 2014. Foliar Application of plant mineral nutrients on wheat: A review. Journal of Agriculture and Allied Sciences 3:19–22.
  • Rai, M., and A. Ingle. 2012. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology 94 (2):287–93. doi:https://doi.org/10.1007/s00253-012-3969-4.
  • Rai, M., A. P. Ingle, R. Pandit, P. Paralikar, S. Shende, I. Gupta, J. K. Biswas, and S. S. da Silva. 2018. Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnology Review 7 (4):303–15. doi:https://doi.org/10.1515/ntrev-2018-0031.
  • Raliya, R., R. Nair, S. Chavalmane, W. N. Wang, and P. Biswas. 2015. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7 (12):1584–94. doi:https://doi.org/10.1039/C5MT00168D.
  • Ramesh, K., D. D. Reddy, A. K. Biswas, and A. S. Rao. 2011. Zeolites and their potential uses in agriculture. Advances in Agronomy 113:215–36.
  • Rao, S., and G. S. Shekhawat. 2016. Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea. 3 Biotech 6 (2):244. doi:https://doi.org/10.1007/s13205-016-0550-3.
  • Rawtani, D., N. Khatri, S. Tyagi, and G. Pandey. 2018. Nanotechnology-based recent approaches for sensing and remediation of pesticides. Journal of Environmental Management 206:749–62. doi:https://doi.org/10.1016/j.jenvman.2017.11.037.
  • Rouhani, M. S., M. K. Salma, and S. Kalantari. 2012. Insecticied effect of silver and zinc nanoparticles against Aphis nerii Boyer of fonscolombe (Hemiptera: Aphididae). Chilean Journal of Agricultural Research 72 (4):590–94. doi:https://doi.org/10.4067/S0718-58392012000400020.
  • Rui, M., C. Ma, Y. Hao, J. Guo, Y. Rui, X. Tang, Q. Zhao, X. Fan, Z. Zhang, T. Hou, et al. 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science 7: doi: https://doi.org/10.3389/fpls.2016.00815.
  • Sadeghzadeh, B. 2013. A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition 13:905–27.
  • Sarkar, S., S. Datta, and D. Biswas. 2014. Synthesis and characterization of nanoclay- polymer composites from soil clay with respect to their water- holding capacities and nutrient- release behavior. Journal of Applied Polymer Science 131 (6). doi:https://doi.org/10.1002/app.39951.
  • Seleiman, M. F., M. Alotaibi, B. A. Alhammad, B. Alharbi, Y. Refay, and S. A. Badawy. 2020. Effects of ZnO nanoparticles and biochar of rice straw and cow manure on characteristics of contaminated soil and sunflower productivity, oil quality, and heavy metals uptake. Agronomy 10 (6):790. doi:https://doi.org/10.3390/agronomy10060790.
  • Shalaby, T. A., Y. Bayoumi, N. Abdalla, H. Taha, T. Alshaal, S. Shehata, M. Amer, E. Domokos-Szabolcsy, and H. El-Ramady. 2016. Nanoparticles, soils, plants and sustainable agriculture. In Nanoscience in Food and Agriculture, vol. 1, eds. S. Ranjan, N. Dasgupta, E. Lichtfouse, 283–312. Switzerland; Springer Cham.
  • Shams, M., E. Yildirim, G. Agar, S. Ercisli, A. Dursun, M. Ekinci, and R. Kul. 2018. Nitric oxide alleviates copper toxicity ingerminating seed and seedling growth of Lactuca sativa L. Notulae Botanicae Horti Agrobotanici 46 (1):167–72. doi:https://doi.org/10.15835/nbha46110912.
  • Shang, Y., M. Hasan, G. J. Ahammed, M. Li, H. Yin, and J. Zhou. 2019. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 24 (14):2558. doi:https://doi.org/10.3390/molecules24142558.
  • Sharifi, R., K. Mohammadi, and A. Rokhzadi. 2016. Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays). Environmental and Experimental Biology 14 (4):151–56. doi:https://doi.org/10.22364/eeb.14.21.
  • Shaw, A. K., S. Ghosh, H. M. Kalaji, K. Bosa, M. Brestic, M. Zivcak, and Z. Hossain. 2014. Nano-CuO stress induced modulation ofantioxidative defense and photosynthetic performance of syrian barley (Hordeum vulgare L.). Environmental and Experimental Botany 102:37–47. doi:https://doi.org/10.1016/j.envexpbot.2014.02.016.
  • Shebl, A., A. A. Hassan, D. M. Salama, M. E. Abd El-Aziz, and M. S. A. Abd Elwahed. 2019. Green Synthesis of nanofertilizers and their application as a foliar for Cucurbita pepo. L. Journal of Nanomaterials 4:1–11. doi:https://doi.org/10.1155/2019/3476347.
  • Sheykhbaglou, R., M. Sedghi, M. T. Shishevan, and R. S. Sharifi. 2010. Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae 2 (2):112. doi:https://doi.org/10.15835/nsb224667.
  • Siddiqui, M. H., M. H. Al-Whaibi, M. Faisal, and A. A. Al-Sahli. 2014. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry 33 (11):2429–37. doi:https://doi.org/10.1002/etc.2697.
  • Singh, N. B., N. Amist, K. Yadav, D. P. Singh, S. C. Singh, and S. C. Singh. 2013. Zinc Oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Journal of Nanoengineering and Nanomanufacturing 3 (4):353–64. doi:https://doi.org/10.1166/jnan.2013.1156.
  • Singh, D., and A. Kumar. 2016. Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinach oleracea grown in soil media. Bulletin of Environmental Contamination and Toxicology 9 (7):548–53. doi:https://doi.org/10.1007/s00128-016-1872-x.
  • Singh, M. D., and B. A. Kumar. 2017. Bio efficacy of nano zinc sulphide (ZnS) on growth and yield of sunflower (Helianthus annuus L.) and nutrient status in the soil. International Journal of Agricultural Sciences 9:3795–98.
  • Singh, J., and B. K. Lee. 2016. Influence of nano-TiO2 particle son the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environment Management 170:88–96. doi:https://doi.org/10.1016/j.jenvman.2016.01.015.
  • Singh, A., N. B. Singh, I. Hussain, and H. Singh. 2017. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. Journal of Biotechnology 262:11–27. doi:https://doi.org/10.1016/j.jbiotec.2017.09.016.
  • Smijs, T. G., and S. Pavel. 2011. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnology, Science and Applications 4:95–112. doi:https://doi.org/10.2147/NSA.S19419.
  • Sohair, E. E. D., A. A. Abdall, A. M. Amany, H. M. D. Faruque, and R. A. Houda. 2018. Evaluation of nitrogen, phosphorus and potassium nano-fertilizers on yield, yield components and fiber properties of Egyptian cotton (Gossyppium barbadense L.). Journal of Plant Sciences and Crop Protection 1:302.
  • Soliman, A. S., S. A. El-feky, and E. Darwish. 2015. Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. Journal of Horticulture and Forestry 7 (2):36–47. doi:https://doi.org/10.5897/JHF2014.0379.
  • Stampoulis, D., S. K. Sinha, and J. C. White. 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology 43 (24):9473–79. doi:https://doi.org/10.1021/es901695c.
  • Subramanian, K. S., A. Manikandan, M. Thirunavukkarasu, and C. S. Rahale. 2015. Nano-fertilizers for Balanced Crop Nutrition. In Nanotechnologies in Food and Agriculture. eds. Rai, M., Ribeiro, C., Mattoso, L., Duran, N., 69–80. Switzerland: Springer.
  • Subramanian, K. S., and C. Rahale. 2009. Nanofertilizer formulations for balanced fertilization of crops. Paper presented at the Platinum Jubilee Celebrations of ISSS, New Delhi 21–25.
  • Taheri, M., H. A. Qarache, A. A. Qarache, and M. Yoosefi. 2015. The effects of zinc-oxide nanoparticles on growth parameters of corn (SC704). Stem Fellowship Journal 1 (2):17–20. doi:https://doi.org/10.17975/sfj-2015-011.
  • Taiz, L., and E. Zeiger. 2010. Plant physiology, 781. 5th edn ed. Massachusetts: Sinauer Associates Inc.
  • Tarafdar, J. C., R. Raliya, H. Mahawar, and I. Rathore. 2014. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research 3 (3):257–62. doi:https://doi.org/10.1007/s40003-014-0113-y.
  • Tarafder, C., M. Daizy, M. M. Alam, M. R. Ali, M. J. Islam, R. Islam, M. S. Ahommed, M. Aly Saad Aly, and M. Z. H. Khan. 2020. Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. ACS omega 5:23960–66.
  • Thabet, A., O. Galal, M. Tuda, M. El–Samahy, and E. Helmy. 2020. Toxicity evaluation of nano silver on faba bean germination and seedling development. Journal of the Faculty of Agriculture 65:263–68.
  • Thuesombat, P., S. Hannongbua, S. Akasit, and S. Chadchawan. 2014. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety 104:302–09. doi:https://doi.org/10.1016/j.ecoenv.2014.03.022.
  • Tsuji, K. 2001. Microencapsulation on of pesticides and their improved handling safety. Journal of Microencapsulation 18 (2):137–47. doi:https://doi.org/10.1080/026520401750063856.
  • Upadhyaya, H., S. Shome, S. Tewari, M. K. Bhattacharya, and S. K. Panda. 2015. Effect of Zn nano-particles on growth responses of rice. In Nano Technology – Novel Perspectives and Prospects., eds. B. Singh, A. Kaushik, S.K. Mehta, S.K.Tripathi, 508–512.India: Mc Graw Hill education Pvt. Ltd.
  • Wang, H., X. Kou, Z. Pei, J. Q. Xiao, X. Shan, and B. Xing. 2011. Physiological effects of magnetite (Fe 3 O 4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5 (1):30–42. doi:https://doi.org/10.3109/17435390.2010.489206.
  • Wang, Z., X. Xie, J. Zhao, X. Liu, W. Feng, J. C. White, and B. Xing. 2012. Xylem- and Phloem-Based Transport of CuO Nanoparticles in Maize (Zea mays L.). Environmental Science & Technology 46 (8):4434–41. doi:https://doi.org/10.1021/es204212z.
  • Wanyika, H., E. Gate, P. Kioni, Z. Tang, and Y. Gao. 2012. Mesoporous silica nanoparticles carrier for urea: Potential applications in agrochemical delivery systems. Journal of Nanoscience and Nanotechnology 12 (3):2221–28. doi:https://doi.org/10.1166/jnn.2012.5801.
  • Xie, X., W. Hu, X. Fan, H. Chen, and M. Tang. 2019. Interactions between phosphorus, zinc, and iron homeostasis in nonmycorrhizal and mycorrhizal plants. Frontiers in Plant Sciences 10:1172. doi:https://doi.org/10.3389/fpls.2019.01172.
  • Xiong, T. T., C. Dumat, V. Dappe, H. Vezin, E. Schreck, M. Sahid, A. Pierart, and S. Sobanksa. 2017a. Potential contamination of copper oxide nanoparticles and possible consequences on urban agriculture. Environmental Science & Technology 78:5774–82.
  • Xiong, T. T., C. Dumat, V. Dappe, H. Vezin, E. Schreck, M. Shahid, A. Pierart, and S. Sobanska. 2017b. Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environmental Science & Technology 51 (9):5242–51. doi:https://doi.org/10.1021/acs.est.6b05546.
  • Yang, Z., Y. Xiao, T. Jiao, Y. Zhang, J. Chen, and Y. Gao. 2020. Effects of copper oxide nanoparticles on the growth of rice (Oryza Sativa L.) seedlings and the relevant physiological responses. International Journal of Environmental Research and Public Health 17 (4):1260. doi:https://doi.org/10.3390/ijerph17041260.
  • Zaeem, A., S. Drouet, S. Anjum, R. Khurshid, M. Younas, J. P. Blondeau, D. Tungmunnithum, N. Giglioli-Guivarc’h, C. Hano, and B. H. Abbasi. 2020. Effects of biogenic zinc oxide nanoparticles on growth and oxidative stress response in flax seedlings vs. in vitro cultures: A comparative analysis. Biomolecules 17 (6):918. doi:https://doi.org/10.3390/biom10060918.
  • Zahoor, I., F. Jan, U. Sharma, K. Sahu, A. Sharma, S. Pareek, D. Shrivastava, and P. S. Bisen. 2021. Viburnum nervosum leaf extract mediated green synthesis of silver nanoparticles: A viable approach to increase the efficacy of an anticancer drug. Anticancer Agents in Medicinal Chemistry 21 (10):1266–74. doi:https://doi.org/10.2174/1871520620999201001201230.
  • Zhang, R., H. Zhang, C. Tu, X. Hu, L. Li, Y. Luo, and P. Christie. 2015. Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environmental Science and Pollution Research 22 (14):11109–17. doi:https://doi.org/10.1007/s11356-015-4325-x.
  • Zhu, H., J. Han, J. Q. Xiao, and Y. Jin. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. Journal of Environmental Monitoring 10 (6):713–17. doi:https://doi.org/10.1039/b805998e.
  • Zulfiqar, F., M. Ashraf, N. Akram, and S. Munne-Bosch. 2019. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Journal of Plant Sciences 289: 110270.
  • Zuverza-Mena, N., R. Armendariz, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2016. Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value. Frontiers in Plant Sciences 7:90. doi:https://doi.org/10.3389/fpls.2016.00090.
  • Zuverza-Mena, N., I. A. Medina-Velo, A. C. Barrios, W. Tan, J. R. Peralta-Videa, and J. L. Gardea-Torresdey. 2015. Copper nanoparticles/compounds impact agronomic and physiological pa-rameters in cilantro (Coriandrum sativum). Environmental Science: Processes & Impacts 17:1783–93.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.