146
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of Byproduct Amendments and Nitrogen on Carbon Mineralization and Soil Enzyme Activities in Acidic Brown Soil from Jiaodong Peninsula of China

, , , , , & show all
Pages 2608-2621 | Received 14 Jul 2020, Accepted 24 Jan 2022, Published online: 06 May 2022

References

  • Anderson, G. C., S. Pathan, D. J. M. Hall, R. Sharma, and J. Easton. 2021. Short- and long-term effects of lime and gypsum applications on acid soils in a water-limited environment: 2. soil chemical properties. Agronomy 11 (5):826. doi:10.3390/agronomy11050826.
  • Aon, M. A., M. N. Cabello, D. E. Sarena, A. C. Colaneri, M. G. Franco, J. L. Burgos, and S. Cortassa. 2001. I. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil. Applied Soil Ecology 18 (3):239–54. doi:10.1016/S0929-1393(01)00153-6.
  • Bandick, A. K., and R. P. Dick. 1999. Filed management effects on soil enzyme activities. Soil Biology & Biochemistry 31 (11):1471–79. doi:10.1016/S0038-0717(99)00051-6.
  • Bera, T., K. S. Inglett, P. W. Inglett, L. Vardanyan, A. C. Wilkie, G. A. O’Connor, and K. R. Reddy. 2021. Comparing first- and second-generation bioethanol by-products from sugarcane: Impact on soil carbon and nitrogen dynamics. Geoderma 384:114818. doi:10.1016/j.geoderma.2020.114818.
  • Bera, T., L. Vardanyan, K. S. Inglett, K. R. Reddy, G. A. O’Connor, J. E. Erickson, and A. C. Wilkie. 2019. Influence of select bioenergy by-products on soil carbon and microbial activity: A laboratory study. Science of the Total Environment 653:1354–63. doi:10.1016/j.scitotenv.2018.10.237.
  • Cusack, D. F., M. S. Torn, W. H. Mcdowell, and W. L. Silver. 2010. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Global Change Biology 16:2555–72. doi:10.1111/j.1365-2486.2009.02131.x.
  • Floch, C., E. Alarcon-Gutiérrez, and S. Criquet. 2007. ABTS assay of phenol oxidase activity in soil. Journal of Microbiological Methods 71 (3):319–24. doi:10.1016/j.mimet.2007.09.020.
  • Frankenberger, W. T., and J. B. Johanson. 1983. Method of measuring invertase activity in soils. Plant and Soil 74 (3):301–11. doi:10.1007/BF02181348.
  • Ge, S., Z. Zhu, and Y. Jiang. 2018. Long-term impact of fertilization on soil ph and fertility in an apple production system. Journal of Soil Science and Plant Nutrition 18:282–93. doi:10.4067/S0718-95162018005001002.
  • Ghani, A., M. Dexter, and K. W. Perrott. 2003. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biology & Biochemistry 35 (9):1231–43. doi:10.1016/S0038-0717(03)00186-X.
  • Guan, S. Y. 1986. Soil enzymology and research method. Beijing: Agricultural Press. (in Chinese)
  • Ibrahim, M. M., C. Tong, K. Hu, B. Zhou, Y. Mao, and Y. Mao. 2020. Biochar-fertilizer interaction modifies n-sorption, enzyme activities and microbial functional abundance regulating nitrogen retention in rhizosphere soil. Science of the Total Environment 739:140065. doi:10.1016/j.scitotenv.2020.140065.
  • Jatana, B. S., C. Kitchens, C. Ray, and N. Tharayil. 2020. Regulating the nutrient release rates from proteinaceous agricultural byproducts using organic amendments and its effect on soil chemical and microbiological properties. Biology and Fertility of Soils 56:747–58. doi:10.1007/s00374-020-01446-z.
  • Joergensen, R. G., and P. C. Brookes. 1990. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biology & Biochemistry 22:1023–27. doi:10.1016/0038-0717(90)90027-W.
  • Kaur, T., B. S. Brar, and N. S. Dhillon. 2008. Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize-wheat cropping system. Nutrient Cycling in Agroecosystems 81:59–69. doi:10.1007/s10705-007-9152-0.
  • Li, J. Y., Z. D. Liu, A. Z. Zhao, and R. K. Xu. 2014a. Microbial and enzymatic properties in response to amelioration of an acidic Ultisol by industrial and agricultural by-products. Journal of Soils and Sediments 14:441–50. doi:10.1007/s11368-013-0666-6.
  • Li, J. Y., N. Wang, R. K. Xu, and D. Tiwari. 2010. Potential of industrial byproducts in ameliorating acidity and aluminum toxicity of soils under tea plantation. Pedosphere 20:645–54. doi:10.1016/S1002-0160(10)60054-9.
  • Li, L., H. Wu, C. A. M. van Gestel, W. J. G. M. Peijnenburg, and H. E. Allen. 2014b. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. Environmental Pollution 188:144–52. doi:10.1016/j.envpol.2014.02.003.
  • Li, Y., G. Feng, H. Tewolde, F. Zhang, C. Yan, and M. Yang. 2021. Soil aggregation and water holding capacity of soil amended with agro-industrial byproducts and poultry litter. Journal of Soils and Sediments 21:1127–35. doi:10.1007/s11368-020-02837-3.
  • Lu, R. K. 2000. Methods for agrochemical analysis of soil. Beijing: China Agricultural Science and Technology Press.
  • Martínez, J. M., J. A. Galantini, and M. E. Duval. 2018. Contribution of nitrogen mineralization indices, labile organic matter and soil properties in predicting nitrogen mineralization. Journal of Soil Science and Plant Nutrition 18:73–89. doi:10.4067/S0718-95162018005000401.
  • Mokolobate, M. S., and R. J. Haynes. 2002. Increases in pH and soluble salts influence the effect that additions of organic residues have on concentrations of exchangeable and soil solution aluminium. European Journal of Soil Science 53:481–89. doi:10.1046/j.1365-2389.2002.00465.x.
  • Munda, S., D. Bhaduri, S. Mohanty, D. Chatterjee, R. Tripathi, M. Shahid, U. Kumar, P. Bhattacharyya, A. Kumar, T. Adak, et al. 2018. Dynamics of soil organic carbon mineralization and c fractions in paddy soil on application of rice husk biochar. Biomass & Bioenergy 115:1–9. doi:10.1016/j.biombioe.2018.04.002.
  • Nourbakhsh, F., and C. M. Monreal. 2004. Effects of soil properties and trace metals on urease activities of calcareous soils. Biology & Fertility of Soils 40:359–62. doi:10.1007/s00374-004-0786-7.
  • Peryea, F. J., and R. L. Burrows. 1999. Soil acidification caused by four commercial nitrogen fertilizer solutions and subsequent soil pH rebound. Communications in Soil Science and Plant Analysis 30:525–33. doi:10.1080/00103629909370223.
  • Pokharel, P., and S. X. Chang. 2019. Manure pellet, woodchip and their biochars differently affect wheat yield and carbon dioxide emission from bulk and rhizosphere soils. The Science of the Total Environment 659:463–72. doi:10.1016/j.scitotenv.2018.12.380.
  • Rengel, Z., C. Tang, C. Raphael, and J. W. Bowden. 2000. Understanding subsoil acidification: Effect of nitrogen transformation and nitrate leaching. Australian Journal of Soil Research 38:837–49. doi:10.1071/sr99109.
  • Robertson, G. P., D. Wedin, P. M. Groffman, J. M. Blair, E. Holland, K. J. Nadelhoffer, and D. Harris. 1999. Soil carbon and nitrogen availability: Nitrogen mineralization, nitrification, and soil respiration potentials. In Standard soil methods for long-term ecological research, ed. G. P. Robertson, C. S. Bledsoe, D. C. Coleman, and P. Sollins, 258–71. New York: Oxford University Press.
  • Shen, Y., Y. Xu, Z. Liu, H. Lin, Y. Zhang, X. Song, P. Liu, Y. Li, J. Chen, H. Chen, et al. 2018. Effects of byproduct amendments on enzyme activities and physicochemical properties of acidic orchard soil from Jiaodong Peninsula of China. Communications in Soil Science and Plant Analysis 49:1–10. doi:10.1080/00103624.2018.1448408.
  • Šnajdr, J., V. Valášková, V. Merhautováa, J. Herinková, T. Cajthaml, and P. Baldrian. 2008. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology & Biochemistry 40:2068–75. doi:10.1016/j.soilbio.2008.01.015.
  • Song, Y., C. Song, B. Tao, J. Wang, X. Zhu, and X. Wang. 2014. Short-term responses of soil enzyme activities and carbon mineralization to added nitrogen and litter in a freshwater marsh of Northeast China. European Journal of Soil Biology 61:72–79. doi:10.1016/j.ejsobi.2014.02.001.
  • Sumner, M. E., H. Shahandeh, J. Bouton, and J. Hammel. 1986. Amelioration of an acid soil profile through deep liming and surface application of gypsum. Soil Science Society of America Journal 50:1254–58. doi:10.2136/sssaj1986.03615995005000050069x.
  • Sun, B., R. Poss, R. Moreau, A. Aventurier, and P. Fallavier. 2000. Effect of slacked lime and gypsum on acidity alleviation and nutrient leaching in an acid soil from southern China. Nutrient Cycling in Agroecosystems 57:215–23. doi:10.1023/A:1009870308097.
  • Tran, C. K. T., M. T. Rose, T. R. Cavagnaro, and A. F. Patti. 2015. Lignite amendments has limited impacts on soil microbial communities and mineral nitrogen availability. Applied Soil Ecology 95:140–50. doi:10.1016/j.apsoil.2015.06.020.
  • Vance, E. D., P. C. Brookes, and D. S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry 19:703–07. doi:10.1016/0038-0717(87)90052-6.
  • Vepsäläinen, M., S. Kukkonen, M. Vestberg, H. Sirviö, and R. M. Niemi. 2001. Application of soil enzyme activity test kit in a field experiment. Soil Biology & Biochemistry 33:1665–72. doi:10.1016/S0038-0717(01)00087-6.
  • Wang, Y., Z. Yao, Y. Zhan, X. Zheng, M. Zhou, G. Yan, L. Wang, C. Werner, and K. Butterbach-Bahl. 2021. Potential benefits of liming to acid soils on climate change mitigation and food security. Global Change Biology 27:2807–21. doi:10.1111/gcb.15607.
  • Xu, G., and H. Zheng. 1986. Handbook of analytical method of soil micro-organism. Beijing: Agricultural Press. (in Chinese).
  • Xue, J. F., Y. M. Gao, J. K. Wang, S. F. Fu, and F. C. Zhu. 2007. Microbial biomass carbon and nitrogen as an indicator for evaluation of soil fertility. Chinese Journal of Soil Science 38:247–50.
  • Zamanian, K., M. Zarebanadkouki, and Y. Kuzyakov. 2018. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Global Change Biology 24:2810–17. doi:10.1111/gcb.14148.
  • Zhang, J. H., and W. W. Fan. 2014. Metal partitioning and relationships to soil microbial properties of submerged paddy soil contaminated by electronic waste recycling. Chemistry and Ecology 31:147–59. doi:10.1080/02757540.2014.907282.
  • Zhang, J. L., F. Guo, J. J. Meng, X. X. Yu, S. Yang, S. B. Zhang, Y. Geng, X. G. Li, and S. B. Wan. 2015. Effects of calcium fertilizer on yield, quality and related enzyme activities of peanut in acidic soil. Chinese Journal of Plant Ecology 11:1101–09. doi:10.17521/cjpe.2015.0107.
  • Zhang, X., H. Wang, X. Hui, Z. Wang, and J. Liu. 2019. Effects of different fertilization and fallowing practices on soil carbon and nitrogen mineralization in a dryland soil with low organic matter. Journal of Soil Science and Plant Nutrition 19:108–16. doi:10.1007/s42729-019-0016-x.
  • Zhu, Q., W. de Vries, X. Liu, T. Hao, M. Zeng, J. Shen, and F. Zhang. 2018. Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980–2010. Science of the Total Environment 618:1497–505. doi:10.1016/j.scitotenv.2017.09.289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.