100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Monitoring of Diazinon in Soil Samples by Ion Mobility Spectrometry

, , ORCID Icon &
Pages 2907-2921 | Received 26 Jul 2021, Accepted 22 Jun 2022, Published online: 04 Jul 2022

References

  • Aria, A. A., A. Sorribes-Soriano, M. T. Jafari, F. Nourbakhsh, F. A. Esteve-Turrilas, S. Armenta, J. M. Herrero-Martínez, and M. de la Guardia. 2019. Uptake and translocation monitoring of imidacloprid to chili and tomato plants by molecularly imprinting extraction—Ion mobility spectrometry. Microchemical Journal 144:195–202. doi:10.1016/j.microc.2018.09.007.
  • Bolognesi, C., and G. Morasso. 2000. Genotoxicity of pesticides: Potential risk for consumers. Trends in Food Science & Technology 11 (4–5):182–87. doi:10.1016/S0924-2244(00)00060-1.
  • Bota, G. M., and P. B. Harrington. 2006. Direct detection of trimethylamine in meat food products using ion mobility spectrometry. Talanta 68 (3):629–35. doi:10.1016/j.talanta.2005.05.001.
  • Cycoń, M., Z. P.-S. M.Wójcik, and Z. Piotrowska-Seget. 2009. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 76 (4):494–501. doi:10.1016/j.chemosphere.2009.03.023.
  • Debski, B., B. F. Kania, and T. Kuryl. 2007. Transformations of diazinon, an organophosphate compound in the environment and poisoning by this compound. Ekológia 26:68. doi:10.1007/s00232-005-0837-5.
  • Djurovic, R., T. Djordjevic, L. Radivojevic, L. Santric, and J. Gajic Umiljendic. 2012. Multiresidue analysis of pesticides in soil by liquid-solid extraction procedure. Journal Pesticides and Phytomedicine 27 (3):239–44. doi:10.2298/PIF1203239D.
  • Fuentes Pérez, E., M. E. Báez Contreras, and R. Labra. 2007. Parameters affecting microwave-assisted extraction of organophosphorus pesticides from agricultural soil. Journal of Chromatography. A 1169 (1–2):40–46. doi:10.1016/j.chroma.2007.08.064.
  • Goncalves, C., and M. Alpendurada. 2005. Assessment of pesticide contamination in soil samples from an intensive horticulture area, using ultrasonic extraction and gas chromatography–mass spectrometry. Talanta 65 (5):1179–89. doi:10.1016/j.talanta.2004.08.057.
  • Hladik, M., and M. M. McWayne. 2012. Methods of analysis-Determination of pesticides in sediment using gas chromatography/mass spectrometry. U.S. Geological Survey 5–C3:1–28.
  • Islam, M. N., Y. T. Jo, S.-K. Jung, and J. H. Park. 2013. Evaluation of subcritical water extraction process for remediation of pesticide-contaminated soil. Water, Air, and Soil Pollution 224 (8):1652–58. doi:10.1007/s11270-013-1652-8.
  • Jafari, M. 2009. Improved design for high resolution electrospray ionization ion mobility spectrometry. Talanta 77 (5):1632–39. doi:10.1016/j.talanta.2008.09.059.
  • Jafari, M. T., M. Saraji, and S. Yousefi. 2012. Negative electrospray ionization ion mobility spectrometry combined with microextraction in packed syringe for direct analysis of phenoxyacid herbicides in environmental waters. Journal of Chromatography. A 1249:41–47. doi:10.4137/ACI.S21901.
  • Jafari, M. T., and F. Riahi. 2014. Feasibility of Corona discharge ion mobility spectrometry for direct analysis of samples extracted by dispersive liquid–liquid microextraction. Journal of Chromatography. A 1343:63–68. doi:10.1016/j.chroma.2014.03.069.
  • Kain, R., Z. Chen, T. Sonda, and J. Abu-Kpawoh. 2009. Study on the effect of control variables on the extraction of peanut protein isolates from peanut meal (Arachis hypogaea L.). American Journal of Food Technology 4 (1):47–55. doi:10.3923/ajft.2009.47.55.
  • Kalhor, H., S. Hashemipour, and M. R. Yaftian. 2016. Ultrasound-Assisted emulsification-microextraction/ion mobility spectrometry combination: Application for analysis of organophosphorus pesticide residues in rice samples. Food Analytical Methods 9 (11):3006–14. doi:10.1007/s12161-016-0492-8.
  • Kreuzig, R., A. Koinecke, and M. Bahadir. 2000. Use of supercritical fluid extraction in the analysis of pesticides in soil. Journal of Biochemical and Biophysical Methods 43 (1–3):403–09. doi:10.1016/S0165-022X(00)00056-7.
  • Mäkinen, M. A., O. A. Anttalainen, and M. E. Sillanpää. 2010. Ion mobility spectrometry and its applications in detection of chemical warfare agents. Analytical Chemistry 82 (23):9594–600. doi:10.1021/ac100931n.
  • Matz, L. M., H. H. Hill, L. W. Beegle, and I. Kanik. 2002. Investigation of drift gas selectivity in high resolution ion mobility spectrometry with mass spectrometry detection. Journal of the American Society for Mass Spectrometry 13 (4):300–07. doi:10.1016/S1044-0305(01)00366-X.
  • Midey, A. J., A. Patel, C. Moraff, C. A. Krueger, and C. Wu. 2013. Improved detection of drugs of abuse using high-performance ion mobility spectrometry with electrospray ionization (ESI-HPIMS) for urine matrices. Talanta 116:77–83. doi:10.1016/j.talanta.2013.04.074.
  • Morgan, M. K., L. S. Sheldon, P. A. Jones, C. W. Croghan, J. C. Chuang, and N. K. Wilson. 2011. The reliability of using urinary biomarkers to estimate children’s exposures to chlorpyrifos and diazinon. Journal of Exposure Science & Environmental Epidemiology 21 (3):280–90. doi:10.1038/jes.2010.11.
  • Ng, W. F., M. J. K. Teo, and H. Å. Lakso. 1999. Determination of organophosphorus pesticides in soil by headspace solid-phase microextraction Fresenius. Journal of Analytical Chemistry 363 (7):673–79. doi:10.1007/s002160051270.
  • Rashid, A., S. Nawaz, H. Barker, I. Ahmad, and M. Ashraf. 2010. Development of a simple extraction and clean-up procedure for determination of organochlorine pesticides in soil using gas chromatography–tandem mass spectrometry. Journal of Chromatography. A 1217 (17):2933–39. doi:10.1016/j.chroma.2010.02.060.
  • Rearden, P., and P. B. Harrington. 2005. Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME–IMS). Analytica chimica acta 545 (1):13–20. doi:10.1016/j.aca.2005.04.035.
  • Sanchez M., R. Mendez, X. Gomez, and J. Martin‐Villacorta. 2003. Determination of diazinon and fenitrothion in environmental water and soil samples by HPLC. Journal of Liquid Chromatography & Related Technologies 26:483–497. doi:10.1081/JLC-120017184
  • Saraji, M., B. Rezaei, M. K. Boroujeni, and A. A. H. Bidgoli. 2013. Polypyrrole/sol–gel composite as a solid-phase microextraction fiber coating for the determination of organophosphorus pesticides in water and vegetable samples. Journal of Chromatography. A 1279:20–26. doi:10.1016/j.chroma.2013.01.017.
  • Saraji, M., M. T. Jafari, and H. Sherafatmand. 2015. Sol–gel/nanoclay composite as a solid-phase microextraction fiber coating for the determination of organophosphorus pesticides in water samples. Analytical and Bioanalytical Chemistry 407 (4):1241–52. doi:10.1007/s00216-014-8344-0.
  • Saraji, M., M. T. Jafari, and M. Mossaddegh. 2016. Carbon nanotubes@ silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography–Corona discharge ion mobility spectrometric detection. Journal of Chromatography. A 1429:30–39. doi:10.1016/j.chroma.2015.12.008.
  • Tang, J., M. Zhang, G. Cheng, and Y. Lu. 2009. Diazinon determination using high performance liquid chromatography: A comparison of the ENVI-Carb column with the immunoaffinity column for the pretreatment of water and soil samples. Bulletin of Environmental Contamination and Toxicology 83 (5):626–29. doi:10.1007/s00128-009-9823-4.
  • Ukpebor, J. E., and C. J. Halsall. 2012. Effects of dissolved water constituents on the photodegradation of fenitrothion and diazinon. Water, Air, and Soil Pollution 223 (2):655–66. doi:10.1007/s11270-011-0890-x.
  • Vagi, M., A. Petsas, M. Kostopoulou, M. Karamanoli, and T. Lekkas. 2007. Determination of organochlorine pesticides in marine sediments samples using ultrasonic solvent extraction followed by GC/ECD. Desalination 210 (1–3):146–56. doi:10.1016/j.desal.2006.06.020.
  • Zhu, Z., T. Jiang, J. He, F. J. Barba, G. Cravotto, and M. Koubaa. 2016. Ultrasound-assisted extraction, centrifugation and ultrafiltration: Multistage process for polyphenol recovery from purple sweet potatoes. Molecules 21 (11):1584. doi:10.3390/molecules21111584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.