595
Views
6
CrossRef citations to date
0
Altmetric
Review

Agronomic Biofortification of Wheat Through Proper Fertilizer Management to Alleviate Zinc Malnutrition: A Review

, , & ORCID Icon
Pages 154-177 | Received 26 Jan 2022, Accepted 03 Aug 2022, Published online: 10 Aug 2022

References

  • Abedi, T., and A. Mojiri. 2020. Cadmium uptake by wheat (Triticum aestivum L.): An overview. Plants 9 (4):500. doi:10.3390/plants9040500.
  • Abu-Elsaoud, A.M., N.A. Nafady, A.M. Abdel- Azeem, and R. Aroca. 2017. Arbuscular mycorrhizal strategy for zinc mycoremediation and diminished translocation to shoots and grains in wheat. PLoS ONE 12 (11):e0188220. doi:10.1371/journal.pone.0188220.
  • Adu, M.O., P.A. Asare, D.O. Yawson, M.A. Nyarko, and K. Osei-Agyeman. 2018. Agronomic biofortification of selected underutilised Solanaceae vegetables for improved dietary intake of potassium (K) in Ghana. Heliyon 4 (8):e00750. doi:10.1016/j.heliyon.2018.e00750.
  • Alloway, B.J. 2004. Zinc in soils and crop nutrition, pp. 1–116. Brussels: IZA Publications, International Zinc Association.
  • Alloway, B.J. 2008. Zinc in Soils and Crop Nutrition. 2nd ed. Brussels, Belgium and Paris, France: IZA and IFA.
  • Alloway, B.J. 2009. Soil factors associated with zinc deficiency in crops and humans. Environmental Geochemistry and Health 31 (5):537–48. doi:10.1007/s10653-009-9255-4.
  • Amiri, R., S. Bahraminejad, S. Sasani, S.J. Honarmand, and R. Fakhri. 2015. Bread wheat genetic variation for grain’s protein, iron and zinc concentrations as uptake by their genetic ability. European Journal of Agronomy 67:20–26. doi:10.1016/j.eja.2015.03.004.
  • Barut, H. 2019. Effects of foliar urea, potassium and zinc sulphate treatments before and after flowering on grain yield, technological quality and nutrient concentrations of wheat. Applied Ecology and Environmental Research 17 (2):4325–4342. doi:10.15666/aeer/1702_43254342.
  • Barut, H., Şimşek, T., Irmak, S., Sevilmiş, U., and Aykanat, S. 2017. The effect of different zinc application methods on yield and grain zinc concentration of bread wheat varieties. Turkish Journal of Agriculture-Food Science and Technology 5 (8):898–907. doi:10.24925/turjaf.v5i8.898-907.1224.
  • Bharti, K., Pandey, N., Shankhdhar, D., Srivastava, P.C., and Shankhdhr, S.C. 2013. Improving nutritional quality of wheat through soil and foliar zinc application. Plant Soil, and Environment 59 (8):348–352.
  • Bhatt, R., A. Hossain, and P. Sharma. 2020. Zinc biofortification as an innovative technology to alleviate the zinc deficiency in human health: A review. Open Agriculture 5 (1):176–87. doi:10.1515/opag-2020-0018.
  • Bouis, H.E., E. Birol, E. Boy, B. Gannon, J.D. Haas, J.W. Low, S. Mehta, K.D. Michaux, B. Mudyahoto, W.H. Pfeiffer, et al. 2020. Food biofortification: Reaping the benefits of science to overcome hidden hunger: A paper in the series on the need for agricultural innovation to sustainably feed the world by 2050. CAST Issue Paper 69. https://www.cast-science.org/wp-content/uploads/2020/10/CAST_IP69_Biofortification-1.pdf.
  • Bouis, H.E., C. Hotz, B. McClafferty, J.V. Meenakshi, and W.H. Pfeiffer. 2011. Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin 32 (1_suppl1):S31–S40. doi:10.1177/15648265110321S105.
  • Bouis, H.E., and A. Saltzman. 2017. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security 12:49–58. doi:10.1016/j.gfs.2017.01.009.
  • Bouis, H.E., and R.M. Welch. 2010. Biofortification: A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science 50:20–32. doi:10.2135/cropsci2009.09.0531.
  • Brennan, R.F. 1991. Effectiveness of zinc-sulfate and zinc chelate as foliar sprays in alleviating zinc deficiency of wheat grown on zinc-deficient soils in Western Australia. Australian Journal of Experimental Agriculture 31 (6):831–34. doi:10.1071/EA9910831.
  • Broadley, M.R., P.J. White, J.P. Hammond, I. Zelko, and A. Lux. 2007. Zinc in plants. The New Phytologist 173 (4):677–702. doi:10.1111/j.1469-8137.2007.01996.x.
  • Brown, K.H., K.M. Hambidge, P. Ranum, and Zinc Fortification Working Group. 2010. Zinc fortification of cereal flours: Current recommendations and research needs. Food and Nutrition Bulletin 31 (1 Suppl):S62–74. PMID: 20629353. doi:10.1177/15648265100311S106.
  • Brown, K.H., S.E. Wuehler, and J.M. Peerson. 2001. The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food and Nutrition Bulletin 22 (2):113–25. doi:10.1177/156482650102200201.
  • Cakmak, I. 2004. Identification and correction of widespread zinc deficiency in Turkey, a success story. IFS Proceedings No. 552, International Fertiliser Society, York, UK.
  • Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil 302 (1–2):1–17. doi:10.1007/s11104-007-9466-3.
  • Cakmak, I. 2010. Biofortification of cereals with zinc and iron through fertilization strategy. Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, Published on DVD, 4–6, August 1–6.
  • Cakmak, I. 2011. Zinc plays critical role in plant growth. Available: https://www.zinc.org/crops/resourceserve/zinc_plays_critical_role_in_plant_growth.
  • Cakmak, I., M. Kalayci, Y. Kaya, A.A. Torun, N. Aydin, Y. Wang, Z. Arisoy, H. Erdem, A. Yazici, O. Gokmen, et al. 2010. Biofortification and localization of zinc in wheat grain. Journal of Agricultural and Food Chemistry 58 (16):9092–102. doi:10.1021/jf101197h.
  • Cakmak, I., M. Kalayci, Y. Kaya, A.A. Torun, N. Aydin, Y. Wang, Z. Arisoy, H. Erdem, A. Yazici, O. Gokmen, et al. 2010a. Biofortification and localization of zinc in wheat grain. Journal of Agricultural & Food Chemistry. 58 (16):9092–102. doi:10.1021/jf101197h.
  • Cakmak, I., and U.B. Kutman. 2018. Agronomic biofortification of cereals with zinc: A review.European. European Journal of Soil Science 69 (1):172–80. doi:10.1111/ejss.12437.
  • Cakmak, I., U.B. Kutman, and B. Yildiz. 2011. Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant and Soil 342 (1–2):149–64. doi:10.1007/s11104-010-0679-5.
  • Cakmak, I., and H. Marschner. 1986. Mechanism of P induced zinc deficiency in cotton. I. Zinc deficiency-enhanced uptake rate of P. Physiologia Plantarum 68 (3):483–90. doi:10.1111/j.1399-3054.1986.tb03386.x.
  • Cakmak, I., W.H. Pfeiffer, and B. McClafferty. 2010b. Biofortification of durum wheat with zinc and iron. Cereal Chemistry Journal 87 (1):10–20. doi:10.1094/CCHEM-87-1-0010.
  • Chattha, M.U., M.U. Hassan, I. Khan, M.B. Chattha, A. Mahmood, M.U. Chattha, M. Nawaz, M.N. Subhani, M. Kharal, and S. Khan. 2017. Biofortification of wheat cultivars to combat zinc deficiency. Frontiers in Plant Science 8:281.
  • Chen, X.P., Y.Q. Zhang, Y.P. Tong, Y.-F. Xue, D.-Y. Liu, W. Zhang, Y. Deng, Q.-F. Meng, S.-C. Yue, P. Yan, et al. 2017. Harvesting more grain zinc of wheat for human health. Scientific Reports. 7 (1):7016. doi:https://doi.org/10.1038/s41598-017-07484-2.
  • Coccina, A., T.R. Cavagnaro, E. Pellegrino, L. Ercoli, M.J. McLaughlin, and S.J. Watts-Williams. 2019. The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC Plant Biology 19 (1):133. doi:https://doi.org/10.1186/s12870-019-1741-y.
  • Curtis, T., and N.G. Halford. 2014. Food security: The challenge of increasing wheat yield and the importance of not compromising food safety. The Annals of Applied Biology 164 (3):354–72. doi:10.1111/aab.12108.
  • Dapkekar, A., P. Deshpande, M.D. Oak, K. M. Paknikar, J. M. Rajwade, et al. 2018. Zinc use efficiency is enhanced in wheat through nano fertilization. Scientific Reports. 8 (1):6832. doi:https://doi.org/10.1038/s41598-018-25247-5.
  • Das, S., M. Jahiruddin, M.R. Islam, A.A. Mahmud, A. Hossain, and A.M. Laing. 2020. Zinc biofortification in the grains of two wheat (Triticum aestivum L.) varieties through fertilization. ActaAgrobotanica 73:7312.
  • Debnath, S., B. Mandal, S. Saha, D. Sarkar, K. Batabyal, S. Murmu, B.C. Patra, D. Mukherjee, and T. Biswas. 2021. Are the modern-bred rice and wheat cultivars in India inefficient in zinc and iron sequestration? Environmental and Experimental Botany 189:104535. doi:10.1016/j.envexpbot.2021.104535.
  • Dobermann, A., and T.H. Fairhurst. 2000. Nutrient disorders and nutrient management. GA, USA: International Plant Nutrition Institute, Peachtree Corners.
  • Doolette, C.L., T.L. Read, N.R. Howell, T. Cresswell, and E. Lombi. 2020. Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: A 65Zn radio labelled translocation study comparing conventional and novel foliar fertilisers. The Science of the Total Environment 749:142369. doi:10.1016/j.scitotenv.2020.142369.
  • Doolette, C.L., T.L. Read, C. Li, K.G. Scheckel, E. Donner, P.M. Kopittke, J.K. Schjoerring, and E. Lombi. 2018. Foliar application of zinc sulphate and zinc EDTA to wheat leaves: Differences in mobility, distribution, and speciation. Journal of Experimental Botany 69 (18):4469–81. doi:10.1093/jxb/ery236.
  • Du, W., J. Yang, Q. Peng, X. Liang, and H. Mao. 2019. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 227:109–16. doi:10.1016/j.chemosphere.2019.03.168.
  • El-Dahshouri, M.F. 2017. Effect of zinc foliar application at different physiological growth stages on yield and quality of wheat under sandy soil conditions. Agricultural Engineering International: CIGR Journal 19: 193–200.
  • Elemike, E.E., I.M. Uzoh, D.C. Onwudiwe, and O.O. Babalola. 2019. The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences 9 (3):499. doi:10.3390/app9030499.
  • Enghiad, A., D. Ufer, M. C. Amanda, and T. D. Am. 2017. An overview of global wheat market fundamentals in an era of climate concerns. International Journal of Agronomy 2017:15. Article ID 3931897. doi:10.1155/2017/3931897.
  • Erdal, I., A. Yilmaz, S. Taban, S. Eker, B. Torun, and I. Cakmak. 2002. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. Journal of Plant Nutrition 25 (1):113–27. doi:10.1081/PLN-100108784.
  • Erenogluet, E.B., U.B. Kutman, Y. Ceylan, B. Yildiz, and I. Cakmak. 2011. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65 Zn) in wheat. The New Phytologist 189 (2):438–48. doi:10.1111/j.1469-8137.2010.03488.x.
  • Esfandiari, E., and M. Abdoli. 2016. Wheat biofortification through zinc foliar application and its effects on wheat quantitative and qualitative yields under zinc deficient stress. YuzuncuYil University Journal of Agricultural Science 26 (4):529–37.
  • Esfandiari, E., M. Abdoli, S.B. Mousavi, and B. Sadeghzadeh. 2016. Impact of foliar zinc application on agronomic traits and grain quality parameters of wheat grown in zinc deficient soil. Indian Journal of Plant Physiology 21 (3):263–70. doi:10.1007/s40502-016-0225-4.
  • Fan, M.S., F.J. Zhao, S.J. Fairweather-Tait, P.R. Poulton, S.J. Sunham, and S.P. McGrath. 2008. Evidence of decreasing mineral density in wheat grain over the last 160 years. Journal of Trace Elements in Medicine & Biology 22 (4):315–24. doi:10.1016/j.jtemb.2008.07.002.
  • Gao, X., D.N. Flaten, M. Tenuta, M.G. Grimmett, E.J. Gawalko, and C.A. Grant. 2011. Soil solution dynamics and plant uptake of cadmium and zinc by durum wheat following phosphate fertilization. Plant and Soil 338 (1–2):423–34. doi:10.1007/s11104-010-0556-2.
  • Garvin, D.F., R.M. Welch, and J.W. Finley. 2006. Historical shifts in the seed mineral micronutrient of US hard red winter wheat germplasm. Journal of the Science of Food and Agriculture 86 (13):2213–20. doi:10.1002/jsfa.2601.
  • Gaxiola, R.A., M.G. Palmgren, and K. Schumacher. 2007. Plant proton pumps. FEBS Letters 581 (12):2204–14. doi:10.1016/j.febslet.2007.03.050.
  • Ghasal, P.C., Y.S. Shivay, V. Pooniya, M. Choudhary, and R.K. Verma. 2017. Zinc partitioning in basmati rice varieties as influenced by Zn fertilization. The Crop Journal 6 (2):136–47. doi:10.1016/j.cj.2017.09.001.
  • Ghasemi, S., A.H. Khoshgoftarmanesh, M. Afyuni, and H. Hadadzadeh. 2013. The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. European Journal of Agronomy 45:68–74. doi:10.1016/j.eja.2012.10.012.
  • Gibson, R.S. 2012. Zinc deficiency and human health: Etiology, health consequences, and future solutions. Plant and Soil 361 (1–2):291–99. doi:10.1007/s11104-012-1209-4.
  • Gibson, R.S., U.M. Donovan, and A.L.M. Heath. 1997. Dietary strategies to improve the iron and zinc nutriture of young women following a vegetarian diet. Plant Foods for Human Nutrition 51 (1):1–16. doi:10.1023/A:1007966104442.
  • Giraldo, P., E. Benavente, F. Manzano-Agugliaro, and E. Gimenez. 2019. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy 9 (7):352. doi:10.3390/agronomy9070352.
  • Glahn, R.P., G.M. Wortley, P.K. South, and D.D. Miller. 2002. Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2: Studies using an in vitro digestion/caco-2 cell model. Journal of Agricultural and Food Chemistry 50 (2):390–95. doi:10.1021/jf011046u.
  • Gomez-Coronado, F., M.J. Poblaciones, A.S. Almeida, and I. Cakmak. 2016. Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant and Soil 401 (1–2):331–46. doi:https://doi.org/10.1007/s11104-015-2758-0.
  • Gomez-Coronado, F., M.J. Poblaciones, A.S. Almeida, and I. Cakmak. 2017. Combined zinc and nitrogen fertilization in different bread wheat genotypes grown under Mediterranean conditions. Cereal Research Communications 45 (1):154–65. doi:10.1556/0806.44.2016.046.
  • Grant, C.A., L.D. Bailey, J.T. Harapiak, and N.A. Flore. 2002. Effect of phosphate source, rate and cadmium content and use ofPenicillium bilaii on phosphorus, zinc and cadmium concentration in durum wheat grain. Journal of the Science of Food and Agriculture 82 (3):301–08. doi:10.1002/jsfa.1034.
  • Gupta, S., A.K.M. Brazier, and N.M. Lowe. 2020. Zinc deficiency in low- and middle- income countries: Prevalence and approaches for mitigation. Journal of Human Nutrition and Dietetics 33 (5):624–43. doi:10.1111/jhn.12791.
  • Habib, M. 2009. Effect of foliar application of Zn and Fe on wheat yield and quality. African Journal of Biotechnology 8:6795–98.
  • Hacisalihoglu, G., and M. Blair. 2020. Current advances in zinc in soils and plants: Implications for zinc efficiency and biofortification studies. Achieving Sustainable Crop Nutrition 76:337–53.
  • Hanjagi, P.S., and B. Singh. 2017. Interactive regulation of iron and zinc nutrition in wheat (Triticum aestivum L.). Indian Journal of Plant Physiology 22 (1):70–78. doi:10.1007/s40502-016-0272-x.
  • Haslett, B.S., R.J. Reid, and Z. Rengel. 2001. Zinc mobility in wheat: Uptake and distribution of zinc applied to leaves or roots. Annals of Botany 87 (3):379–86. doi:10.1006/anbo.2000.1349.
  • Herrington, C., K. Lividini, M. D. Angel, and E. Birol 2019. Prioritizing Countries for Biofortification Interventions: Biofortification Priority Index Second Edition (BPI 2.0). HarvestPlus Working Paper No. 40. https://www.harvestplus.org/knowledge-market/publications.
  • Hossain, A., K.A. Mottaleb, M. Farhad, and N.C.D. Barma. 2019. Mitigating the twin problems of malnutrition and wheat blast by one wheat variety, ‘BARI Gom 33’, in Bangladesh. ActaAgrobotanica 72 (2):1775.
  • Hotz, C., and K.H. Brown. 2004. Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin 25:S91–S204.
  • Huang, X., Y.G. Li, W. Sun, J.F. Hou, Y. Ma, Z. Jian, D.Y. Ma, C.Y. Wang, and G. Tc. 2018. Variation of grain iron and zinc contents and their bioavailability of wheat cultivars with different colored grains under combined nitrogen and phosphorus fertilization. ActaAgronomicasinica 44 (10):1506–16.
  • Hussain, S., A.M. Khan, and Z. Rengel. 2019. Zinc-Biofortified wheat accumulates more cadmium in grains than standard wheat when grown on cadmium-contaminated soil regardless of soil and foliar zinc application. The Science of the Total Environment 654:402–08. doi:10.1016/j.scitotenv.2018.11.097.
  • Hussain, S., M.A. Maqsood, T. Aziz, and S.M.A. Basra. 2013. Zinc bioavailability response curvature in wheat grains under incremental zinc applications. Archives of Agronomy and Soil Science 59 (7):1001–16. doi:10.1080/03650340.2012.701732.
  • Hussain, S., M. Maqsood, and M. Rahmatullah. 2010. Increasing grain zinc and yield of wheat for the developing world: A review. Emirates Journal of Food and Agriculture 22 (5):326–39. doi:10.9755/ejfa.v22i5.4821.
  • Hussain, S., M.A. Maqsood, Z. Rengel, and A. Tariq. 2012. Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant and Soil 361 (1–2):279–90. doi:https://doi.org/10.1007/s11104-012-1217-4.
  • Kamaral, C., S.M. Neate, N. Gunasinghe, P.J. Milham, D.J. Paterson, P.M. Kopittke, and S. Seneweera. 2022. Genetic biofortification of wheat with zinc: Opportunities to fine-tune zinc uptake, transport and grain loading. Physiologia Plantarum 174 (1). doi:10.1111/ppl.13612.
  • Karim, M.R., and M.A. Rahman. 2015. Drought risk management for increased cereal production in Asian least developed countries. Weather & Climate Extremes 7:24–35. doi:10.1016/j.wace.2014.10.004.
  • Khoshgoftarmanesh, A.H., H. Shariatmadari, N. Karimian, M. Kalbasi, and M.R. Khajehpour. 2004. Zinc efficiency of wheat cultivars grown on a saline calcareous soil. Journal of Plant Nutrition 27 (11):1953–62. doi:10.1081/PLN-200030068.
  • Krebs, N.F., L.V. Miller, and K.M. Hambidge. 2014. Zinc deficiency in infants and children: A review of its complex and synergistic interactions. Paediatrics and International Child Health 34 (4):279–88. doi:10.1179/2046905514Y.0000000151.
  • Kumar, A., Denre, M., and Prasad, R. 2018. Agronomic biofortification of zinc in wheat (Triticum aestivum L.). Current Science 115 (5):944–948. doi:10.18520/cs/v115/i5/944-948.
  • Kumar, A., Y. Kubota, M. Chernov, and H. Kasuya. 2020. Potential role of zinc supplementation in prophylaxis and treatment of COVID-19. Medical Hypotheses 144:109848. doi:10.1016/j.mehy.2020.109848.
  • Kutman, U.B., B.Y. Kutman, Y. Ceylan, E.A. Ova, and I. Cakmak. 2012. Contributions of root uptake and remobilization to grain zinc accumulation in wheat depending on post-anthesis zinc availability and nitrogen nutrition. Plant and Soil 361:177–87. doi:10.1007/s11104-012-1300-x.
  • Kutman, U.B., B. Yildiz, and I. Cakmak. 2011. Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant and Soil 342 (1–2):149–64. doi:10.1007/s11104-010-0679-5.
  • Kutman, U.B., B. Yildiz, I. Oturk, and I. Cakmak. 2010. Biofortification of durum wheat with zinc through soil and foliar application of nitrogen. Cereal Chemistry Journal 87 (1):1–9. doi:10.1094/CCHEM-87-1-0001.
  • Li, M., X.W. Yang, X.H. Tian, S.X. Wang, and Y.L. Chen. 2014. Effect of nitrogen fertilizer and foliar zinc application at different growth stages on zinc translocation and utilization efficiency in winter wheat. Cereal Research Communications 42 (1):81–90. doi:10.1556/CRC.2013.0042.
  • Liu, D.Y., Y.M. Liu, W. Zhang, X.P. Chen, and C.Q. Zou. 2019. Zinc uptake, translocation, and remobilization in winter wheat as affected by soil application of Zn fertilizer. Frontiers in Plant Science 10:426. doi:10.3389/fpls.2019.00426.
  • Liu, D., W. Zhang, L. Pang, Y. Zhang, X. Wang, Y. Liu, X.-P. Chen, F.-S. Zhang, C.-Q. Zou, et al. 2017. Effects of zinc application rate and zinc distribution relative to root distribution on grain yield and grain Zn concentration in wheat. Plant and Soil. 411 (1–2):167–78. doi:10.1007/s11104-016-2953-7.
  • Long, D. Y. 2019. Molecular Cytogentic identification of BC1F8 generation of common wheat- Aegilops Geniculata Roth SY159 Progeny. Xianyang: Northwest A&F University.
  • Mandal, B., G.C. Hazra, and L.N. Mandal. 2000. Soil management influence on zinc desorption for rice and maize nutrition. Soil Science Society of America Journal 64 (5):1699–705. doi:10.2136/sssaj2000.6451699x.
  • Marschner, H. 1993. Zinc uptake from soils. In Zinc in soils and plants, ed. A. D. Robson, 59–77. Dordrecht: Kluwer Academic Publishers.
  • Marschner, H. 1995. Mineral nutrition of higher plants. San Diego, CA: Academic Press.
  • Marschner, P. 2012. Marschner’s mineral nutrition of higher plants. San Diego, USA: Academic Press.
  • Maxfield, L., Shukla, S., and J.S. Crane. 2022. Zinc deficiency. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 650. https://www.ncbi.nlm.nih.gov/books/NBK493231/
  • McDonald, G.K., Y. Genc, and R.D. Graham. 2008. A simple method to evaluate genetic variation in Zn grain concentration by correcting for differences in grain yield. Plant and Soil 306 (1–2):49–55. doi:10.1016/j.fcr.2013.05.012.
  • Milani, N., G.M. Hettiarachchi, J.K. Kirby, D.G. Beak, S.P. Stacey, M.J. McLaughlin, and Y. K. Mishra. 2015. Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil. PLoS ONE 10 (5):1–16. doi:10.1371/journal.pone.0126275.
  • Mortvedt, J.J. 1991. Micronutrient fertilizer technology. In Micronutrients in agriculture, ed. M. JJ, C. FR, S. LM, W. RM, 89–112. Madison, WI: Soil Science Society of America.
  • Narwal, R.P., Malik, R.S., and Dahiya, R.R. 2010. Addressing variations in status of a few nutritionally important micronutrients in wheat crop. Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, pp.1–3
  • Niyigaba, E., A. Twizerimana, I. Mugenzi, W.A. Ngnadong, Y.P. Ye, B.M. Wu, and J.B. Hai. 2019. Winter wheat grain quality, zinc and iron concentration affected by a combined foliar spray of zinc and iron fertilizers. Agronomy 9 (5):250. doi:10.3390/agronomy9050250.
  • Oury, F.X., F. Leenhardt, C. Remesy, E. Chanliaud, B. Duperrier, F. Balfourier, G. Charmet, et al. 2006. Genetic variability and stability of grain magnesium, zinc and iron concentrations in bread wheat. European Journal of Agronomy. 25 (2):177–85. doi:10.1016/j.eja.2006.04.011.
  • Ozturk, L., M.A. Yazici, C. Yucel, A. Torun, C. Cekic, A. Bagci, H. Ozkan, H.-J. Braun, Z. Sayers, I. Cakmak, et al. 2006. Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum. 128 (1):144–52. doi:10.1111/j.1399-3054.2006.00737.x.
  • Palmgren, M.G., S. Clemens, L.E. Williams, U. Kraemer, S. Borg, J.K. Schjorring, and D. Sanders. 2008. Zinc biofortification of cereals: Problems and solutions. Trends in Plant Science 13 (9):464–73. doi:10.1016/j.tplants.2008.06.005.
  • Paramesh, V., S. Dhar, A. Dass, B. Kumar, A. Kumar, D.O. El-Ansary, and H.O. Elansary. 2020. Role of integrated nutrient management and agronomic fortification of zinc on yield, nutrient uptake and quality of wheat. Sustainability 12 (9):3513. doi:10.3390/su12093513.
  • Pellegrino, E., M. Öpik, E. Bonari, and L. Ercoli. 2015. Responses of wheat to arbuscular mycorrhizal fungi: A meta-analysis of field studies from 1975 to 2013. Soil Biology & Biochemistry 84:210–17. doi:10.1016/j.soilbio.2015.02.020.
  • Peng, N., Z. Xiaoyuan, W. Tianqi, L. Yafei, W. Shaoxia, F. Peiwen, D. Jinjin, S. Jianglan, and T. Xiaohong. 2021. Biofortification of wheat with zinc as affected by foliar applications of zinc, pesticides, phosphorus and biostimulants. Crop & Pasture Science. doi:10.1071/CP20455.
  • Poursarebani, N., Nussbaumer, T., Simková, H., Safář, J., Witsenboer, H., van Oeveren, J., Doležel, J., Mayer, K.F., Stein, N., and Schnurbusch, T. 2014. Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome. The Plant Journal 79(2):334–47. doi: 10.1111/tpj.12550.
  • Prom-U-Thai, C., L. Huang, B. Rerkasem, G. Thomson, J. Kuo, M. Saunders, B. Dell, et al. 2008. Distribution of protein bodies and phytate-rich inclusions in grain tissues of low and high iron rice genotypes. Cereal Chemistry Journal. 85 (2):257–65. doi:10.1094/CCHEM-85-2-0257.
  • Rashid, A., H. Ram, C.Q. Zou, B. Rerkasem, A.P. Duarte, S. Simunji, A. Yazici, S. Guo, M. Rizwan, R.S. Bal, et al. 2019. Effect of zinc? Biofortified seeds on grain yield of wheat, rice, and common bean grown in six countries. Journal of Plant Nutrition and Soil Science 182 (5):791–804. doi:10.1002/jpln.201800577.
  • Rengel, Z. 2015. Availability of Mn, Zn and Fe in the rhizosphere. Journal of Soil Science and Plant Nutrition 15:397–409.
  • Rengel, Z., G.D. Batten, and D.E. Crowley. 1999. Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research 60 (1–2):27–40. doi:10.1016/S0378-4290(98)00131-2.
  • Roohani, N., R. Hurrell, R. Kelishadi, and R. Schulin. 2013. Zinc and its importance for human health: An integrative review. Journal Research in Medical Sciences 18:144–57.
  • Sadeghzadeh, B. 2013. A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition 13 (4):905–27.
  • Saha, S., M. Chakraborty, D. Padhan, B. Saha, S. Murmu, K. Batabyal, A. Seth, G.C. Hazra, B. Mandal, and R.W. Bell. 2017. Agronomic biofortification of zinc in rice: Influence of cultivars and zinc application methods on grain yield and zinc bioavailability. Field Crops Research 210:52–60. doi:10.1016/j.fcr.2017.05.023.
  • Saha, S., B. Mandal, G.C. Hazra, A. Dey, M. Chakraborty, B. Adhikari, S.K. Mukhopadhyay, and R. Sadhukhan. 2015. Can agronomic biofortification of zinc be benign for iron in cereals? Journal of Cereal Science 65:186–91. doi:10.1016/j.jcs.2015.06.007.
  • Saifullah, A., H. Javed, A. Naeem, Z. Rengel, and S. Dahlawi. 2016. Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat. Environmental Science and Pollution Research 23 (16):16432–39. doi:10.1007/s11356-016-6822-y.
  • Sazawal, S., U. Dhingra, P. Dhingra, A. Dutta, S. Deb, J. Kumar, P. Devi, and A. Prakash. 2018. Efficacy of high zinc biofortified wheat in improvement of micronutrient status, and prevention of morbidity among preschool children and women- a double masked, randomized, controlled trial. Nutrition Journal 17 (1):86. doi:https://doi.org/10.1186/s12937-018-0391-5.
  • Seth, A., D. Sarkar, A. Datta, B. Mandal, A. Chowdhury, R.E. Masto, A. Chakravarty, G. Hazra, S. Badole, K. Batyabal, et al. 2017. Suitability of complex extractants for assessment of available soil zinc for nutrition of rice (Oryza sativa L.) in subtropical India. Soil Science 182 (1):28–35. doi:10.1097/SS.0000000000000190.
  • Shewry, P.R., T.K. Pellny, and A. Lovegrove. 2016. Is modern wheat bad for health? Nature Plants 2 (7):16097. doi:https://doi.org/10.1038/nplants.2016.97.
  • Shi, R., Y. Zhang, X. Chen, Q. Sun, F. Zhang, V. Römheld, C. Zou, et al. 2010. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). Journal of Cereal Science. 51 (1):165–70. doi:10.1016/j.jcs.2009.11.008.
  • Shivay, Y.S., D. Kumar, and R. Prasad. 2008. Relative efficiency of zinc sulfate and zinc oxide–coated urea in rice–wheat cropping system. Communications in Soil Science and Plant Analysis 39 (7–8):1154–67. doi:10.1080/00103620801925869.
  • Shukla, A.K., N.K. Sinha, P.K. Tiwari, C. Prakash, S.K. Behera, N.K. Lenka, V.K. Singh, B.S. Dwivedi, K. Majumdar, A. Kumar, et al. 2017. Spatial distribution and management zones for sulfur and micronutrients in Shiwalik Himalayan region of India. Land Degradation & Development 28 (3):959–69. doi:10.1002/ldr.2673.
  • Shukla, A.K., N.K. Sinha, P.K. Tiwari, C. Prakash, S.K. Behera, P. SurendraBabu, M.C. Patnaik, J. Somasundaram, P. Singh, B.S. Dwivedi, et al. 2018. Evaluation of spatial distribution and regional zone delineation for micronutrients in a semiarid Deccan Plateau Region of India. Land Degradation & Development 29 (8):2449–59. doi:10.1002/ldr.2992.
  • Singh, N.B., N. Amist, K. Yadav, D. Singh, J.K. Pandey, and S.C. Singh. 2013. Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Journal of Nanoengineering and Nanomanufacturing 3 (4):353–64. doi:10.1166/jnan.2013.1156.
  • Singh, D., and R. Prasanna. 2020. Potential of microbes in the biofortification of Zn and Fe in dietary food grains. A review. Agronomy for Sustainable Development 40 (2):15. doi:10.1007/s13593-020-00619-2.
  • Stein, A.J. 2014. Rethinking the measurement of under nutrition in a broader health context. Global Food Security 3 (3–4):193–99. doi:10.1016/j.gfs.2014.09.003.
  • Subbaiah, L.V., T.N. Prasad, T.G. Krishna, P. Sudhakar, B.R. Reddy, and T. Pradeep. 2016. Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in Maize (Zea mays L.). Journal of Agricultural and Food Chemistry 64 (19):3778–88. doi:10.1021/acs.jafc.6b00838.
  • Terrin, G., R.B. Canani, M. di Chiara, A. Pietravalle, V. Aleamdri, F. Conte, M. De Curtis, et al. 2015. Zinc in early life: A key element in the fetus and preterm neonate. Nutrients. 7 (12):10427–46. doi:10.3390/nu7125542.
  • Tilman, D., K.G. Cassman, P.A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418 (6898):671–77. doi:10.1038/nature01014.
  • Torun, B.G., I. Bozbay, H.J. Gultekin, H. Braun, C. I. Ekiz, and I. Cakmak. 2000. Differences in shoot growth and zinc concentration of 164 bread wheat genotypes in a zinc-deficient calcareous soil. Journal of Plant Nutrition 23 (9):1251–65. doi:10.1080/01904160009382098.
  • Turnlund, J.R., J.C. King, W.R. Keyes, B. Gong, and M.C. Michel. 1984. A stable isotope study of zinc absorption in young men: Effects of phytate and α-cellulose. The American Journal of Clinical Nutrition 40 (5):1071–77. doi:10.1093/ajcn/40.5.1071.
  • Velu, G., I. Ortiz-Monasterio, I. Cakmak, Y. Hao, and R.P. Singh. 2014. Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science 59 (3):365–72. doi:10.1016/j.jcs.2013.09.001.
  • Verna, T.S., and R.S. Minhas. 1987. Zinc and phosphorus interaction in a wheat-maize cropping system. Fertilizer Research 13 (1):77–86. doi:10.1007/BF01049804.
  • Wang, M., F. Kong, R. Liu, Q. Fan, and X. Zhang. 2020. Zinc in wheat grain, processing, and food. Frontier in Nutrition 7:124. doi:10.3389/fnut.2020.00124.
  • Wang, Z., Q. Liu, F. Pan, L. Yuan, and X. Yin. 2015. Effects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc biofortified wheat. Field Crops Research 184:58–64. doi:http://dx.doi.org/10.1016/j.fcr.2015.09.007.
  • Wang, J., H. Mao, H. Zhao, D. Huang, and Z. Wang. 2012. Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau, China. Field Crops Research 135:89–96. doi:10.1016/j.fcr.2012.07.010.
  • Waters, B.M., and M.A. Grusak. 2008. Whole-Plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta Cape Verde Islands, and the mutant line ysl1ysl3. New Phytologist New Phytologist 177 (2):389–405. doi:10.1111/j.1469-8137.2007.02288.x.
  • Waters, B.M., C. Uauy, J. Dubcovsky, and M.A. Grusak. 2009. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Experimental Botany 60 (15):4263–74. doi:10.1093/jxb/erp257.
  • Watts-Williams, S.J., and S.E. Gilbert. 2020. Arbuscular mycorrhizal fungi affect the concentration and distribution of nutrients in the grain differently in barley compared with wheat. Plants People Planet 2020:1–11.
  • Welch, R.M., and R.D. Graham. 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany 55 (396):353–64. doi:10.1093/jxb/erh064.
  • Welch, R.M., J.J. Harti, W.A. Norvell, L.A. Sullivan, and L.V. Kochian. 1999. Effects of nutrient solution zinc activity on net uptake, translocation, and root export of cadmium and zinc by separated sections of intact durum wheat (Triticum turgidum L. var durum) seedling roots. Plant and Soil 208 (2):243–50. doi:10.1023/A:1004598228978.
  • Wessels, I., B. Rolles, and L. Rink. 2020. The potential impact of zinc supplementation on COVID-19 pathogenesis. Frontiers in Immunology 11:1712. doi:10.3389/fimmu.2020.01712.
  • White, P.J., and M.R. Broadley. 2009. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. The New Phytologist 182 (1):49–84. doi:10.1111/j.1469-8137.2008.02738.x.
  • Wilkinson, H. F., J. F. Loneragan, and J. P. Quirk. 1968. The movement of zinc to plant roots. Soil Science Society of America Proceedings 32: 831–33.
  • World Health Organization. 2003. The World Health report 2002. Midwifery 19:72–73. doi:10.1054/midw.2002.0343.
  • Xia, H., W. Kong, L. Wang, Y. Xue, W. Liu, C. Zhang, S. Yang, and C. Li. 2019. Foliar Zn spraying simultaneously improved concentrations and bioavailability of Zn and Fe in maize grains irrespective of foliar sucrose supply. Agronomy 9 (7):386. doi:10.3390/agronomy9070386.
  • Yang, X.W., Tian, X.H., Gale, W.J., Cao, Y.X., Lu, X.C., and Zhao, A.Q. 2011. Effect of soil and foliar zinc application on zinc concentration and bioavailability in wheat grain grown on potentially zinc-deficient soil. Cereal Research Communications 39 (4):535–543. doi:10.1556/CRC.39.2011.4.8.
  • Yerokun, O.A., and M. Chirwa. 2014. Soil and foliar application of Zinc to maize and wheat grown on a Zambian Alfisol. African Journal of Agricultural Research 9 (11):963–70. doi:10.5897/AJAR2013.7623.
  • Yilmaz, O., G.K. Altintas, I. Cakmak, and L. Ozturk. 2017. Differences in grain zinc are not correlated with root uptake and grain translocation of zinc in wild emmer and durum wheat genotypes. Plant and Soil 411 (1–2):69–79. doi:10.1007/s11104-016-2969-z.
  • Yilmaz, A., H. Ekiz, I. Gultekin, B. Torun, H. Barut, S. Karanlik, I. Cakmak, et al. 1998. Effect of seed zinc content on grain yield and zinc concentrations of wheat grown in zinc–deficient calcareous soils. Journal of Plant Nutrition. 21 (10):2257–64. doi:10.1080/01904169809365559.
  • Yilmaz, A., H. Ekiz, B. Torun, I. Gültekin, S. Karanlik, S.A. Bagci, I. Cakmak, et al. 1997. Effect of different zinc application methods on grain yield and zinc concentration in wheat grown on zinc-deficient calcareous soils in Central Anatolia. Journal of Plant Nutrition. 20 (4–5):461–71. doi:10.1080/01904169709365267.
  • Yoo, S.M., and B.R. James. 2002. Zinc extractability as a function of pH inorganic waste amended soils. Soil Science 167 (4):246–59. doi:10.1097/00010694-200204000-00002.
  • Yuvaraj, M., and K.S. Subramanian. 2018. Development of slow-release Zn fertilizer using nano-zeolite as carrier. Journal of Plant Nutrition 41 (3):311–20. doi:10.1080/01904167.2017.1381729.
  • Zhang, Y.Q., Y.X. Sun, Y.L. Ye, M.R. Karim, Y.F. Xue, P. Yan, Q.-F. Meng, Z.-L. Cui, I. Cakmak, F.-S. Zhang, et al. 2011. Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crop Research 125:1–7. doi:10.1016/j.fcr.2011.08.003.
  • Zhang, Y.Q., Y.X. Sun, Y.L. Ye, M.R. Karim, Y.F. Xue, P. Yan, Q.F. Meng, Z.L. Cui, I. Cakmak, F.S. Zhang, et al. 2012. Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Research 125:1–7. doi:10.1016/j.fcr.2011.08.003.
  • Zhao, F.J., and S.P. McGrath. 2009. Biofortification and phytoremediation. Current Opinion in Plant Biology 12 (3):373–80. doi:10.1016/j.pbi.2009.04.005.
  • Zhao, F.J., Y.H. Su, S.J. Dunham, M. Rakszegi, Z. Bedo, S.P. McGrath, and P.R. Shewry. 2009. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. Journal of Cereal Science 49 (2):290–95. doi:10.1016/j.jcs.2008.11.007.
  • Zhao, Z.Q., Y.G. Zhu, F.A. Smith, and S.E. Smith. 2005. Cadmium uptake by winter wheat seedlings in response to interactions between phosphorus and zinc supply in soils. Journal of Plant Nutrition 28 (9):1569–80. doi:10.1080/01904160500203457.
  • Zhou, Z., B. Zhang, H. Liu, X. Liang, W. Ma, Z. Shi, and S. Yang. 2019. Zinc effects on cadmium toxicity in two wheat varieties (Triticum aestivum L.) differing in grain cadmium accumulation. Ecotoxicology and Environmental Safety 183:109562. doi:10.1016/j.ecoenv.2019.109562.
  • Zimmermann, M.B., and R.F. Hurrell. 2002. Improving iron, zinc and vitamin a nutrition through plant biotechnology. Current Opinion in Biotechnology 13 (2):142–45. doi:10.1016/S0958-1669(02)00304-X.
  • Zou, C.Q., Y.Q. Zhang, A. Rashid, H. Ram, E. Savasli, R.Z. Arisoy, I. Ortiz-Monasterio, S. Simunji, Z.H. Wang, V. Sohu, et al. 2012. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and Soil 361 (1–2):119–30. doi:10.1007/s11104-012-1369-2.
  • Zulfiqar, U., S. Hussain, M. Ishfaq, A. Matloob, N. Ali, M. Ahmad, M.N. Alyemeni, and P. Ahmad. 2020. Zinc-induced effects on productivity, zinc use efficiency, and grain biofortification of bread wheat under different tillage permutations. Agronomy 10 (10):1566. doi:10.3390/agronomy10101566.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.