92
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Quantifying Saffron (Crocus sativus L.) Leaves and Corms Growth under Natural Saline Conditions

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 975-991 | Received 25 Jan 2022, Accepted 12 Oct 2022, Published online: 27 Oct 2022

References

  • Akhtari, A., M. Homaee, and Y. Hosseini. 2019. A predictive model for plant response to interactive effect of salinity and phosphorus. International Journal of Plant Production 13 (4):317–28. doi:10.1007/s42106-019-00057-5.
  • Alori, E. T., O. C. Emmanuel, B. R. Glick, and O. O. Babalola. 2020. Plant–archaea relationships: A potential means to improve crop production in arid and semi-arid regions. World Journal of Microbiology & Biotechnology 36 (9):1–10. doi:10.1007/s11274-020-02910-6.
  • Ang, R., and C. Oeurng. 2018. Simulating stream flow in an ungauged catchment of tonlesap lake basin in cambodia using soil and water assessment tool (SWAT) model. Water Science 32 (1):89–101. doi:10.1016/j.wsj.2017.12.002.
  • Avarseji, Z., M. Kafi, M. Sabet Teimouri, and K. Orooji. 2013. Investigation of salinity stress and potassium levels on morphophysiological characteristics of saffron. Journal of Plant Nutrition 36 (2):299–310. doi:10.1080/01904167.2012.739249.
  • Babaei, S., V. Niknam, and M. Behmanesh. 2021. Comparative effects of nitric oxide and salicylic acid on salinity tolerance in saffron (Crocus sativus). Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology 155 (1):73–82. doi:10.1080/11263504.2020.1727975.
  • Banning, N.C., L.D. Maccarone, L.M. Fisk, and D.V. Murphy. 2015. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Scientific Reports 5 (1):11146. doi:10.1038/srep11146.
  • Behdani, M. A., M. J. Al-Ahmadi, and H.R. Fallahi. 2016. Biomass partitioning during the life cycle of saffron (Crocus sativus L.) using regression models. Journal of Crop Science and Biotechnology 19 (1):71–76. doi:10.1007/s12892-015-0082-0.
  • Dastranj, M., and A. R. Sepaskhah. 2019. Saffron response to irrigation regime, salinity and planting method. Scientia Horticulturae 251:215–24. doi:10.1016/j.scienta.2019.03.027.
  • de Juan, J. A., H. L. Córcoles, R. M. Muñoz, and M. R. Picornell. 2009. Yield and yield components of saffron under different cropping systems. Industrial Crops and Products 30 (2):212–19. doi:10.1016/j.indcrop.2009.03.011.
  • Dirksen, C., J. B. Kool, P. Koorevaar, and M. T. van Genuchten. 1993. Hyswasor simulation model of hysteretic water and solute transport in the root zone. In Water flow and solute transport in soils, eds. D. Russo and G. Dagan, 99–122. New York: Springer Verlage.
  • Etminan, S., V. Jalali, M. Mahmoodabadi, A. Khashei Siuki, and M. Pourreza Bilondi. 2022. GLUE algorithm capability in estimating the van Genuchten soil–water characteristic parameters and their uncertainties. Paddy and Water Environment 20 (2):227–39. doi:10.1007/s10333-021-00886-z.
  • Feddes, R. A., P. Kowalik, and H. Zarandy. 1978. Simulation of field water use and crop yield. The Netherlands: PudocWageningen.
  • Feizi, H., R. Moradi, N. Pourghasemian, and H. Sahabi. 2021. Assessing saffron response to salinity stress and alleviating potential of gamma amino butyric acid, salicylic acid and vermicompost extract on salt damage. South African Journal of Botany 141:330–43. doi:10.1016/j.sajb.2021.04.036.
  • Gardner, W. R. 1960. Dynamic aspects of water availability to plants. Soil Science 89 (2):63–73. doi:10.1097/00010694-196002000-00001.
  • Gresta, F., C. Santonoceto, and G. Avola. 2016. Crop rotation as an effective strategy for saffron (Crocus sativus L.) cultivation. Scientia Horticulturae 211:34–39. doi:10.1016/j.scienta.2016.08.007.
  • Gupta, H. V., S. Sorooshian, and P. O. Yapo. 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of Hydrological Engineering 4 (2):135–43. doi:10.1061/(ASCE)1084-0699(1999)4:2(135).
  • Hatam, Z., M. S. Sabet, M. J. Malakouti, and M. Homaee. 2020. A quantitative approach for fertilizer recommendation under saline conditions. Archives of Agronomy and Soil Science 66 (4):502–16. doi:10.1080/03650340.2019.1624725.
  • Homaee, M., C. Dirksen, and R. A. Feddes. 2002a. Simulation of root water uptake: I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural Water Management 57 (2):89–109. doi:10.1016/S0378-3774(02)00072-0.
  • Homaee, M., R. A. Feddes, and C. Dirksen. 2002b. Simulation of root water uptake: II. Non-uniform transient water stress using different reduction functions. Agricultural Water Management 57 (2):111–26. doi:10.1016/S0378-3774(02)00071-9.
  • Homaee, M., R. A. Feddes, and C. Dirksen. 2002c. Simulation of root water uptake: III. Non-uniform transient combined salinity and water stress. Agricultural Water Management 57 (2):127–44. doi:10.1016/S0378-3774(02)00073-2.
  • Homaee, M., R. A. Feddes, and C. Dirksen. 2002d. A macroscopic water extraction model for non-uniform transient salinity and water stress. Soil Science Society of America Journal 66 (6):1764–72. doi:10.2136/sssaj2002.1764.
  • Homaee, M., and U. Schmidhalter. 2008. Water integration by plants root under non-uniform soil salinity. Irrigation Science 27 (1):83–95. doi:10.1007/s00271-008-0123-2.
  • Jalali, V., and S. Asadi Kapourchal. 2020. Assessing four different macroscopic water uptake models for maize plant (Zea mays L.) under salinity stress. Irrigation and Drainage 70 (1). doi: 10.1002/ird.2526.
  • Jalali, V., S. A. Kapourchal, and M. Homaee. 2017. Evaluating performance of macroscopic water uptake models at productive growth stages of durum wheat under saline conditions. Agricultural Water Management 180:13–21. doi:10.1016/j.agwat.2016.10.015.
  • Khatoon, H., N. Haris, S. Banerjee, N. A. Rahman, H. Begum, S. Mian, and A. Endut. 2017. Effects of different salinities on the growth and proximate composition of Dunaliella sp. isolated from South China Sea at different growth phases. Process Safety and Environmental Protection 112:280–87. doi:10.1016/j.psep.2017.04.010.
  • Khoshpeyk, S., R. Sadarabadi, and A. Ahmadian. 2021. Investigation of some physiological and functional responses of saffron (Crocus sativus L.) to salinity stress under the influence of silicon, nanosilicon and superabsorbent polymer. Saffron Agronomy and Technology 9 (4):375–93.
  • Koocheki, A., H.R. Fallahi, and M. Jami-Al-Ahmadi. 2019. Saffron water requirements. In Saffron: Science, technology and health, eds. A. Koocheki, M. Khajeh-Hosseini 2019 Dec 2.67-92: Woodhead Publishing Limited
  • Koocheki, A., and M. Khajeh-Hosseini, eds. 2019. Saffron: Science, technology and health. Woodhead Publishing Limited.
  • Koocheki, A., S. M. Seyyedi, and M. J. Eyni. 2014. Irrigation levels and dense planting affect flower yield and phosphorus concentration of saffron corms under semi-arid region of Mashhad Northeast Iran. Scientia Horticulturae 180:147–55. doi:10.1016/j.scienta.2014.10.031.
  • Maas, E. V. 1990. Crop salt tolerance. In Agricultural salinity assessment and management, ed. K. Tanji, 262–304. New York: ASCE Manuals and Reports on Engineering Practice.
  • Maas, E. V., and G. J. Hoffman. 1977. Crop salt tolerance–current assessment. Journal of the Irrigation and Drainage Division 103 (2):115–34. doi:10.1061/JRCEA4.0001137.
  • Maleki, F., H. Kazemi, A. Siahmarguee, and B. Kamkar. 2017. Development of a land use suitability model for saffron (Crocus sativus L.) cultivation by multi-criteria evaluation and spatial analysis. Ecological Engineering 106:140–53. doi:10.1016/j.ecoleng.2017.05.050.
  • Mehari, A., B. Schultz, and H. Depeweg. 2006. Salinity impact assessment on crop yield for WadiLaba spate irrigation system in eritrea. Agricultural Water Management 85 (1–2):27–37. doi:10.1016/j.agwat.2006.05.009.
  • Mzabri, I., M. Addi, and A. Berrichi. 2019. Traditional and modern uses of saffron (Crocus Sativus). Cosmetics 6 (4):63–74. doi:10.3390/cosmetics6040063.
  • Naghizadeh, M., M. Gholami Shabestari, and M. Shamsaddin Saied. 2014. The study of some physiological responses of three Iranian saffron (Crocus sativus L.) landraces to salinity stress. Saffron Agronomy and Technology 2 (2):127–36. doi:10.22048/jsat.2014.7270.
  • Nash, J. E., and J. V. Sutcliffe. 1970. River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology 10 (3):282–90. doi:10.1016/0022-1694(70)90255-6.
  • Pérez, J. A. F., and J. E. Martínez. 2001. Biotecnología del azafrán, Vol. 31. Univ de Castilla La Mancha.
  • Pirasteh-Anosheh, H., S. E. Hashemi, A. Del Borghi, D. Spasiano, M. Rad, and M. Race. 2022. Feasibility study of saffron cultivation using a semi-saline water by managing planting date, a new statement. Environmental Research 203:111853. doi:10.1016/j.envres.2021.111853.
  • Renau-Morata, B., S. G. Nebauer, M. Sánchez, and R. V. Molina. 2012. Effect of corm size: Water stress and cultivation conditions on photosynthesis and biomass partitioning during the vegetative growth of saffron (Crocus sativus L.). Industrial Crops and Products 39:40–46. doi:10.1016/j.indcrop.2012.02.009.
  • Richards, L. A. 1931. Capillary conduction of liquids in porous mediums. Physics 1 (5): 318–333.
  • Saadat, S., and M. Homaee. 2015. Modeling sorghum response to irrigation water salinity at early growth stage. Agricultural Water Management 152:119–24. doi:10.1016/j.agwat.2015.01.008.
  • Sepaskhah, A., and A. A. Kamgar-Haghighi. 2009. Saffron irrigation regime. International Journal of Plant Production 3:1–16.
  • Sepaskhah, A., and N. Yarami. 2010. Evaluation of macroscopic water extraction model for salinity and water stress in saffron yield production. International Journal of Plant Production 4 (3):175–86.
  • van Genuchten, M. T., and G. J. Hoffman. 1984. Analysis of crop salt tolerance data. In Soil salinity under irrigation process and management. ecol. stud, eds. I. Shainberg and J. Shalhevet, 258–71. New York: Springer-Verlag.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.