355
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Distribution of Organic Carbon Fractions in Soil Aggregates and Their Contribution to Soil Aggregate Formation of Paddy Soils

, ORCID Icon & ORCID Icon
Pages 1350-1367 | Received 02 Aug 2022, Accepted 02 Nov 2022, Published online: 11 Nov 2022

References

  • Amézketa, E. 1999. Soil aggregate stability: A review. Journal of Sustainable Agriculture 14 (2–3):83‒151. doi:10.1300/J064v14n02_08.
  • Baes, A. U., and P. R. Bloom. 1989. Diffuse reflectance and transmission Fourier transform infrared (DRIFT) spectroscopy of humic and fulvic acids. Soil Science Society of America Journal 53 (3):695‒700. doi:10.2136/sssaj1989.03615995005300030008x.
  • Beare, M. H., P. F. Hendrix, M. L. Cabrera, and D. C. Coleman. 1994. Aggregate-protected and unprotected organic matter pools in conventional- and no-tillage soils. Soil Science Society of America Journal 58 (3):787‒795. doi:10.2136/sssaj1994.03615995005800030021x.
  • Bruun, S., I. K. Thomsen, B. T. Christensen, and L. Jensen. 2007. In search of stable soil organic carbon fractions: A comparison of methods applied to soils labelled with 14C for 40 days or 40 years. European Journal of Soil Science 59 (2):247‒56. doi:10.1111/j.1365-2389.2007.00985.x.
  • Cheshire, M. V. 1977. Origins and stability of soil polysaccharide. Journal of Soil Science 28 (1):1‒10. doi:10.1111/j.1365-2389.1977.tb02290.x.
  • Christensen, B. T. 1992. Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science 20:1‒90.
  • Denef, K., J. Six, H. Bossuyt, S. D. Frey, E. T. Elliott, R. Merckx, and K. Paustian. 2001. Influence of dry–wet Cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biology & Biochemistry 33 (12):1599‒1611. doi:10.1016/S0038-0717(01)00076-1.
  • Elliott, E. T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal 50 (3):627‒633. doi:10.2136/sssaj1986.03615995005000030017x.
  • Elliott, E. T., R. V. Anderson, D. C. Coleman, and C. V. Cole. 1980. Habitable pore space and microbial trophic interactions. Oikos 35 (3):327‒335. doi:10.2307/3544648.
  • Elliott, E. T., C. A. Palm, D. E. Reuss, and C. A. Monz. 1991. Organic matter contained in soil aggregates from a tropical chronosequence: Correction for sand and light fraction. Agriculture, Ecosystems & Environment 34 (1‒4):443‒451. doi:10.1016/0167-8809(91)90127-J.
  • Figueiredo, C. C., D. V. S. Resck, and M. A. C. Carneiro. 2010. Labile and stable fractions of soil organic matter under management systems and native Cerrado. Revista Brasileira de Ciência Do Solo 34 (3):907‒916. doi:10.1590/S0100-06832010000300032.
  • Garcia, R. A., Y. C. Li, and C. A. Rosolem. 2013. Soil organic matter and physical attributes affected by crop rotation under no-till. Soil Science Society of America Journal 77 (5):1724‒1731. doi:10.2136/sssaj2012.0310.
  • Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. In Methods of soil analysis: part 1 physical and mineralogical methods. ed. A. Klute, 383‒411. Madison, WI: American Society of Agronomy, Inc
  • Haynes, R. J. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy 5:221‒268.
  • Helfrich, M., H. Flessa, R. Mikutta, A. Dreves, and B. Ludwig. 2007. Comparison of chemical fractionation methods for isolating stable soil organic carbon pools. European Journal of Soil Science 58 (6):1316‒1329. doi:10.1111/j.1365-2389.2007.00926.x.
  • Huang, Z., Z. Xu, C. Chen, and S. Boyd. 2008. Changes in soil carbon during the establishment of a hardwood plantation in subtropical Australia. Forest Ecology and Management 254 (1):46‒55. doi:10.1016/j.foreco.2007.07.021.
  • Jagadamma, S., and R. Lal. 2010. Integrating physical and chemical methods for isolating stable soil organic carbon. Geoderma 158 (3‒4):322‒330. doi:10.1016/j.geoderma.2010.05.014.
  • Janzen, H. H., C. A. Campbell, B. H. Ellert, and E. Bremer. 1997. Soil organic matter dynamics and their relationship to soil quality. In Soil quality for crop production and ecosystem health. ed. E. G. Gregorich, M. R. Carter, 277‒291. Amsterdam: Elsevier.
  • Jastrow, J. D., R. M. Miller, and T. W. Boutton. 1996. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Science Society of America Journal 60 (3):801‒807. doi:10.2136/sssaj1996.03615995006000030017x.
  • Jindaluang, W., I. Kheoruenromne, A. Suddhiprakarn, B. P. Singh, and B. Singh. 2013. Influence of soil texture and mineralogy on organic matter content and composition in physically separated fractions soils of Thailand. Geoderma 195‒196:207‒219. doi:10.1016/j.geoderma.2012.12.003.
  • Kiem, R., and I. Kögel-Knabner. 2003. Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biology & Biochemistry 35 (1):101‒118. doi:10.1016/S0038-0717(02)00242-0.
  • Killham, K., M. Amato, and J. N. Ladd. 1993. Effect of substrate location in soil and soil pore-water regime on carbon turnover. Soil Biology & Biochemistry 25 (1):57‒62. doi:10.1016/0038-0717(93)90241-3.
  • Kleber, M., R. Mikutta, M. S. Torn, and R. Jahn. 2005. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. European Journal of Soil Science 56 (6):717‒725. doi:10.1111/j.1365-2389.2005.00706.x.
  • Krull, E. S., J. A. Baldock, and J. O. Skjemstad. 2003. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Functional Plant Biology 30 (2):207‒222. doi:10.1071/FP02085.
  • Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123 (1‒2):1‒22. doi:10.1016/j.geoderma.2004.01.032.
  • Lal, R. 2011. Sequestering carbon in soils of agro-ecosystems. Food Policy 36:S33‒S39. doi:10.1016/j.foodpol.2010.12.001.
  • Lehmann, J., and M. Kleber. 2015. The contentious nature of soil organic matter. Nature 528 (7580):60‒68. doi:10.1038/nature16069.
  • Lehmann, J., D. Solomon, J. Kinyangi, L. Dathe, S. Wirick, and C. Jacobsen. 2008. Spatial complexity of soil organic matter forms at nanometre scales. Nature Geoscience 1 (4):238‒242. doi:10.1038/ngeo155.
  • Li, B., T. Ge, H. Xiao, Z. Zhu, Y. Li, O. Shibistova, S. Liu, J. Wu, K. Inubushi, and G. Guggenberger. 2016. Phosphorus content as a function of soil aggregate size and paddy cultivation in highly weathered soils. Environmental Science Pollution Research 23 (8):7494‒7503. doi:10.1007/s11356-015-5977-2.
  • Liu, Y., T. Ge, K. J. van Groenigen, Y. Yang, P. Wang, K. Cheng, Z. Zhu, J. K. Wang, Y. Li, G. Guggenberger, et al. 2021. Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Communications Earth & Environment 2:154. doi:10.1038/s43247-021-00229-0.
  • Martin, J. P. 1971. Decomposition and binding action of polysaccharides in soil. Soil Biology & Biochemistry 3 (1):33‒41. doi:10.1016/0038-0717(71)90029-0.
  • Martin, J. P., and S. J. Richards. 1963. Decomposition and binding action of a polysaccharide from chromobacterium violaceum in soil. Journal of Bacteriology 85 (6):1288‒1294. doi:10.1128/jb.85.6.1288-1294.1963.
  • Martin, J. P., and S. J. Richards. 1969. Influence of the copper, zinc, iron, and aluminum salts of some microbial and plant polysaccharides on aggregation and hydraulic conductivity of Ramona sandy loam. Soil Science Society of America Journal 33 (3):421‒423. doi:10.2136/sssaj1969.03615995003300030025x.
  • McKeague, J. A., and J. H. Day. 1966. Dithionite- and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science 46 (1):13‒22. doi:10.4141/cjss66-003.
  • Mehra, O. P., and M. L. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals 7 (1):317‒327. doi:10.1346/CCMN.1958.0070122.
  • National Soil Survey Center. 1996. Soil survey laboratory methods manual. Soil Survey Invest Report No. 42, Version 3.0 U.S. Dept Of Agr., Washington D.C: U.S. Government Printing Office
  • Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. In Methods of soil analysis. part iii. chemical method. ed. D. L. Sparks, A. L. Page, P. A. Helmke, and R. H. Loeppert, 961–1010. Madison, Wisconsin, USA: American Society of Agronomy, Inc.
  • Niemeyer, J., Y. Chen, and J. M. Bollag. 1992. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Science Society of America Journal 56 (1):135‒140. doi:10.2136/sssaj1992.03615995005600010021x.
  • Oades, J. M., and A. G. Waters. 1991. Aggregate hierarchy in soils. Australian Journal of Soil Research 29 (6):815‒828. doi:10.1071/SR9910815.
  • Puget, P., C. Chenu, and J. Balesdent. 1995. Total and young organic matter distributions in aggregates of silty cultivated soils. European Journal of Soil Science 46 (3):449‒459. doi:10.1111/j.1365-2389.1995.tb01341.x.
  • Six, J., H. Bossuyt, S. Degryze, and K. Denef. 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research 79 (1):7‒31. doi:10.1016/j.still.2004.03.008.
  • Six, J., R. T. Conant, E. A. Paul, and K. Paustian. 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil 241 (2):155‒176. doi:10.1023/A:1016125726789.
  • Six, J., E. T. Elliott, and K. Paustian. 1999. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America Journal 63 (5):1350‒1358. doi:10.2136/sssaj1999.6351350x.
  • Six, J., E. T. Elliott, and K. Paustian. 2000. Soil structure and soil organic matter II. a normalized stability index and the effect of mineralogy. Soil Science Society of America Journal 64 (3):1042‒1049. doi:10.2136/sssaj2000.6431042x.
  • Sollins, P., P. Homann, and B. A. Caldwell. 1996. Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 74 (1‒2):65‒105. doi:10.1016/S0016-7061(96)00036-5.
  • Stevenson, F. J. 1994. Extraction, fractionation, and general chemical composition of soil organic matter. In Humus chemistry, genesis, composition, reactions. ed. F. J. Stevenson, 24‒58. New York: John Wiley and Sons
  • Strosser, E. 2010. Methods for determination of labile soil organic matter: An overview. Journal of Agrobiology 27 (2):49‒60. doi:10.2478/s10146-009-0008-x.
  • Thomas, G. W. 1983. Exchangeable cations. In Methods of soil analysis: part 2. chemical and microbiological properties. ed. A. L. Page, 159‒165. Madison, Wisconsin, USA: American Society of Agronomy
  • Tisdall, J. M., and J. M. Oades. 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science 33 (2):141‒163. doi:10.1111/j.1365-2389.1982.tb01755.x.
  • Tobiašová, E., G. Barančíková, E. Gömöryová, J. Makovnikova, R. Skalský, J. Halas, Š. Koco, Z. Tarasovičová, J. Takáč, and M. Špaňo. 2016. Labile forms of carbon and soil aggregates. Soil and Water Research 11 (4):259‒266. doi:10.17221/182/2015-SWR.
  • Walkley, A., and I. A. Black. 1934. An examination of degtjareff method for determining soil organic matter: A proposed modification of chromic acid titration method. Soil Science 37 (1):29‒38. doi:10.1097/00010694-193401000-00003.
  • Wang, Q. Y., Y. Wang, Q. C. Wang, and J. S. Liu. 2014. Impacts of 9 years of a new conservational agricultural management on soil organic carbon fractions. Soil and Tillage Research 143:1–6. doi:10.1016/j.still.2014.05.004.
  • Wissing, L., A. Kölbl, W. Häusler, P. Schad, Z. H. Cao, and I. Kögel-Knabner. 2013. Management-induced organic carbon accumulation in paddy soils: The role of organo-mineral associations. Soil and Tillage Research 126:60‒71. doi:10.1016/j.still.2012.08.004.
  • Wu, J. 2011. Carbon accumulation in paddy ecosystems in subtropical China: Evidence from landscape studies. European Journal of Soil Science 62 (1):29‒34. doi:10.1111/j.1365-2389.2010.01325.x.
  • Yang, Y., J. Guo, G. S. Chen, Y. F. Yin, R. Gao, and C. F. Lin. 2009. Effects of forest conversion on soil labile organic carbon fractions and aggregate stability in subtropical China. Plant and Soil 323 (1–2):153‒162. doi:10.1007/s11104-009-9921-4.
  • Zech, W., and I. Kögel-Knabner. 1994. Patterns and regulation of organic matter transformation in soils: Litter decomposition and humification. In Flux control in biological systems. ed. E. D. Schulze, 303‒334. Boston: Academic Press
  • Zech, W., N. Senesi, G. Guggenberger, K. Kaiser, J. Lehmann, T. M. Miano, A. Miltner, and G. Schroth. 1997. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79 (1):117‒161. doi:10.1016/S0016-7061(97)00040-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.