181
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Determination of Water Stress in Wheat Crops by Thermal Images Under Mediterranean Conditions

, ORCID Icon &
Pages 1713-1726 | Received 21 Jul 2022, Accepted 27 Mar 2023, Published online: 10 May 2023

References

  • Anonymous. 2021. Long-term climate data. Antalya Meteoroloji Bölge Müdürlüğü. https://antalya.mgm.gov.tr/
  • Banerjee, K., P. Krishnan, and B. Das. 2020. Thermal imaging and multivariate techniques for characterizing and screening wheat genotypes under water stress condition. Ecological Indicators 119:2–16. doi:10.1016/J.Ecolind.2020.106829.
  • Banerjee, K., P. Krishnan, and N. Mridha. 2018. Application of thermal imaging of wheat crop canopy to estimate leaf area index under different moisture stress conditions. Biosystems Engineering 166:13–27. doi:10.1016/J.Biosystemseng.2017.10.012.
  • Bhuiyan, C., A. K. Saha, N. Bandyopadhyay, and F. N. Kogan. 2017. Analyzing the impact of thermal stress on vegetation health and agricultural drought – a case study from Gujarat, India. GIScience & Remote Sensing 54 (5):678–99. doi:10.1080/15481603.2017.1309737.
  • Bijanzadeh, E., V. Barati, Y. Emam, and M. Pes. 2019. Assessment of the crop water stress index and color quality of bur clover (Medicago polymorpha) under different irrigation regimes. Communications in Soil Science and Plant Analysis 50 (22):2825–35. doi:10.1080/00103624.2019.1679166.
  • Boutraa, T. A., A. Akhkha, A. Al-Shoaibi, and A. M. Alhejeli. 2010. Effect of water stress on growth and water use efficiency (wue) of some wheat cultivars (Triticum Durum) grown in Saudi Arabia. Journal of Taibah University for Science 3 (1):39–48. doi:10.1016/S1658-3655(12)60019-3.
  • Çalışan, M., and M. Turkoglu2011. Thermal cameras and applications. Electrical-Electronics and computer symposium 5-7 Ekim 46–50. Elazığ.
  • Chen, C. 2015. Determining the leaf emissivity of three crops by infrared thermometry. Sensors 15 (5):11387–401. doi:10.3390/s150511387.
  • Cohen, Y., V. Alchanatis, M. Meron, Y. Saranga, and J. Tsipris. 2005. Estimation of leaf water potential by thermal imagery and spatial analysis. Journal of Experimental Botany 56 (417):1843–52. doi:10.1093/Jxb/Eri174.
  • Dragovic, S. 1999. Drought effects on agriculture in Yugoslavia. In Proceedings of Balkan Drought Workshop. Belgrade, Yugoslavia, pp. 171–81.
  • Elsayed, S., S. El-Hendawy, M. Khadr, O. Elsherbiny, N. Al-Suhaibani, M. Alotaibi, M. U. Tahir, and W. Darwish. 2021. Combining thermal and rgb imaging indices with multivariate and data-driven modeling to estimate the growth, water status, and yield of potato under different drip irrigation regimes. Remote Sensing 13 (9):2–28. doi:10.3390/rs13091679.
  • Eroglu, I., G. Camoglu, and K. Demirel. 2020. Determination of water stress and some physiological traits in pepper plant with thermography technique. YYU Journal of Agricultural Science 30 (3):486–97. doi:10.29133/Yyutbd.713717.
  • Fedoroff, N. V., D. S. Battisti, R. N. Beachy, P. J. M. Cooper, D. A. Fischhoff, C. N. Hodges, V. C. Knauf, D. Lobell, B. J. Mazur, D. Molden, et al. 2010. Radically rethinking agriculture for the 21st century. Science. 327(5967):833–34. doi:10.1126/science.1186834.
  • Han, M., H. Zhang, K. C. DejongeComas, and L. H. Trout. 2016. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricultural Water Management 177:400–09. doi:10.1016/J.Agwat.2016.08.031.
  • Hatfield, J. L. 1990. Measuring plant stress with an infrared thermometer. HortScience 25 (12):1535–38. doi:10.21273/HORTSCI.25.12.1535.
  • IBM SPSS Inc2012. SPSS statistics for windows. IBM Corp Released 2012 Version, 20:8.
  • Jia, L., X. Chen, F. Zhang, A. Buerkert, and V. Roemheld. 2007. Optimum nitrogen fertilization of winter wheat based on color digital camera images. Communications in Soil Science and Plant Analysis 38 (11–12):1385–94. doi:10.1080/00103620701375991.
  • Jones, H. G., M. Stoll, T. Santos, C. De Sousa, M. M. Chaves, and O. M. Grant. 2002. Use of infrared thermography for monitoring stomatal closure in the field: Application to grapevine. Journal of Experimental Botany 53 (378):2249–60. doi:10.1093/jxb/erf083.
  • Kandic, V., D. Dodig, M. Jovic, B. Nikolic, and S. Prodanovic. 2009. The importance of physiological traits in wheat breeding under irrigation and drought stress. Genetika 41 (1):11–20. doi:10.2298/GENSR0901011K.
  • Krishna, G., R. N. Sahoo, P. Singh, H. Patra, V. Bajpai, B. Das, S. Kumar, R. Dhandapani, C. Vishwakarma, M. Pal, et al. 2021. Application of thermal imaging and hyperspectral remote sensing for crop water deficit stress monitoring. Geocarto International 36 (5):481–98. doi:10.1080/10106049.2019.1618922.
  • Kurunc, A., A. Unlukara, and B. Cemek. 2011. Salinity and drought affect yield response of bell pepper similarly. Acta Agriculturae Scandinavica Section B: Soil and Plant Science 61 (6):514–22. doi:10.1080/09064710.2010.513691.
  • Lee, W. S., V. Alchanatis, C. Yang, M. Hirafuji, D. Moshou, and C. Li. 2010. Sensing technologies for precision specialty crop production. Computers and Electronics in Agriculture 74 (1):2–33. doi:10.1016/j.compag.2010.08.005.
  • Leinonen, I., and H. G. Jone. 2004. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. Journal of Experimental Botany 55 (401):1423–31. doi:10.1093/Jxb/Erh146.
  • Masseroni, D., B. Ortuani, M. Corti, P. M. Gallina, G. Cocetta, A. Ferrante, and A. Facchi. 2017. Assessing the reliability of thermal and optical imaging techniques for detecting crop water status under different nitrogen levels. Sustainability 9 (9):2–20. doi:10.3390/Su9091548.
  • Passioura, J. B., A. G. Condon, and R. A. Richards. 1993. Water deficits, the development of leaf area and crop productivity. In Water deficits: Plant responses from cell to community, ed. C. J. A. Smith and H. Griffiths, 253–64. Oxford: Bios Scientific Publishers.
  • Pu, R., P. Gong, and G. S. Biging. 2003. Simple calibration of AVIRIS data and LAI mapping of forest plantation in Southern Argentina. International Journal of Remote Sensing 24 (23):4699–714. doi:10.1080/0143116031000082433.
  • Song, Q., C. Sun, Y. Deng, H. Bai, Y. Zhang, H. Yu, J. Zhang, L. Sha, W. Zhou, and Y. Liu. 2020. Tree surface temperature in a primary tropical rain forest. Atmosphere 11 (8):2–10. doi:10.3390/atmos11080798.
  • Ünlükara, A., A. Kurunç, G. D. Kesmez, and E. Yurtseven. 2008. Growth and evapotranspiration of okra (Abelmoschus esculentus L.) as influenced by salinity of irrigation water. Journal of Irrigation and Drainage Engineering 134 (2):160–66. doi:10.1061/(ASCE)0733-9437(2008)134:2(160).
  • Vieira, G. H. S., and R. S. Ferrarezi. 2021. Use of thermal imaging to assess water status in citrus plants in greenhouses. Horticulturae 7 (8):2–16. doi:10.3390/Horticulturae7080249.
  • WEF2015. World economic forum. Global Risks 2015World Economic Forum Within the Framework of the Global Competitiveness and Benchmarking NetworkGlobal Risks 2015World Economic Forum Within the Framework of the Global Competitiveness and Benchmarking Network 10th. 69.
  • Xu, J., Z. Yu, Y. Shi, P. Guo, and Y. Wang. 2017. Effect of different supplemental irrigation strategies on photosynthetic characteristics and water use efficiency of wheat. Chilean Journal of Agricultural Research 77 (4):346–54. doi:10.4067/S0718-58392017000400346.
  • Zhang, X., W. Qin, S. Chen, L. Shao, and H. Sun. 2017. Responses of yield and WUE of winter wheat to water stress during the past three decades- a case study in the North China plain. Agricultural Water Management 179:47–54. doi:10.1016/j.agwat.2016.05.004.
  • Zhao, B., T. Adama, S. T. AtaUlkarim, Y. Guo, Z. Liu, J. Xiao, Z. Liu, A. Qin, D. Ning, and A. Duan. 2022. Recalibrating plant water status of winter wheat based on nitrogen nutrition index using thermal images. Precision Agriculture 23 (3):748–67. doi:10.1007/S11119-021-09859-Y.
  • Zhou, Y., N. J. Luo, L. Feng, Y. Yang, Y. Chen, and W. Wu. 2019. Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data. GIScience & Remote Sensing 56 (8):1170–91. doi:10.1080/15481603.2019.1628412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.