187
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Assessment of Soil Organic Carbon Pools in Different Soils Using Four Fractionation Methods

, , &
Pages 1910-1922 | Received 18 Feb 2022, Accepted 17 Apr 2023, Published online: 17 May 2023

References

  • Barreto, P. A., E. F. Gama-Rodrigues, A. C. Gama-Rodrigues, A. G. Fontes, J. C. Polidoro, M. K. S. Moço, V. C. Machado, and V. C. Baligar. 2011. Distribution of oxidizable organic C fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil. Agroforestry Systems 81 (3):213–20. doi:10.1007/s10457-010-9300-4.
  • Bayer, C., L. Martin-Neto, J. Mielniczuk, and A. Pavinato. 2004. Armazenamento de carbono em frações lábeis da matéria orgânica de um Latossolo Vermelho sob plantio direto. Pesquisa Agropecuária Brasileira 39 (7):677–83. doi:10.1590/S0100-204X2004000700009.
  • Blair, G. J., R. D. B. Lefroy, and L. Lisle. 1995. Soil carbon fractions, based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research 46 (7):1459–66. doi:10.1071/AR9951459.
  • Boix-Fayos, C. A., A. Calvo-Cases, A. Imeson, and M. D. Soriano-Soto. 2001. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 44:47–67. doi:10.1016/S0341-8162(00)00176-4.
  • Bossuyt, H., J. Six, and P. F. Hendrix. 2002. Aggregate protected carbon in no-tillage and conventional tillage agroecosystems using 14C labeled plant residue. Soil Science Society of America Journal 66 (6):1965–73. doi:10.2136/sssaj2002.1965.
  • Broos, K. L., M. Macdonald, M. S. J. Warne, D. A. Heemsbergen, M. B. Barnes, M. Bell, and M. J. McLaughlin. 2007. Limitations of soil microbial biomass carbon as an indicator of soil pollution in the field. Soil Biology & Biochemistry 39:2693–95. doi:10.1016/j.soilbio.2007.05.014.
  • Cambardella, C., and E. T. Elliott. 1992. Particulate soil organic matter changes across a grassland cultivation sequence. Soil Science Society of America Journal 56 (3):777–83. doi:10.2136/sssaj1992.03615995005600030017x.
  • Chan, K. Y., A. Bowman, and A. Oates. 2001. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Science 166:61–67. doi:10.1097/00010694-200101000-00009.
  • Chen, F. S., D. H. Zeng, T. J. Fahey, and P. F. Liao. 2010. Organic carbon in soil physical fractions under different-aged plantations of Mongolian pine in semi-arid region of Northeast China. Applied Soil Ecology 44 (1):42–48. doi:10.1016/j.apsoil.2009.09.003.
  • Devine, S., D. Markewitz, P. Hendrix, and D. Coleman. 2014. Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three decades. PLos One 9 (1):e84988. doi:10.1371/journal.pone.0084988.
  • Elliott, E. T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal 50:627–33. doi:10.2136/sssaj1986.03615995005000030017x.
  • Falloon, P., and P. Smith. 2000. Modelling refractory soil organic matter. Biology and Fertilility of Soils 30 (5–6):388–98. doi:10.1007/s003740050019.
  • Feng, W., A. F. Plante, A. K. Aufdenkampe, and J. Six. 2014. Soil organic matter stability in organo-mineral complexes as a function of increasing C loading. Soil Biology & Biochemistry 69:398–0405. doi:10.1016/j.soilbio.2013.11.024.
  • Fernández-Ugalde, O., I. Virto, M. J. Imaz, A. Enrique, and P. Bescansa. 2010. Relative contribution of naturally-occurring carbonates and soil organic carbon to soil aggregation dynamics. In 19th world congress of soil science, soil solutions for a changing world, 194–97. Brisbane, Australia: International Union of Soil Sciences.
  • Figueiredo, C. C., D. V. S. Resck, and M. A. C. Carneiro. 2010. Labile and stable fractions of soil organic matter under management systems and native Cerrado. Revista Brasileira De Ciência Do Solo 34 (3):907–16. doi:10.1590/S0100-06832010000300032.
  • Geraei, D. S., S. Hojati, A. Landi, and A. F. Cano. 2016. Total and labile forms of soil organic carbon as affected by land use change in southwestern Iran. Geoderma Regional 7 (1):29–37. doi:10.1016/j.geodrs.2016.01.001.
  • Ghosh, P., M. Venkastesh, K. Hazra, and N. Kumar. 2012. Long term effect of pulses and nutrient management on soil organic carbon dynamics and sustainability on an inceptisol of Indo-gangetic plains of India. Experimental Agriculture 48 (4):473–87. doi:10.1017/S0014479712000130.
  • Golchin, A., J. A. Baldock, and J. M. Oades. 1997. A model linking organic matter decomposition, chemistry, and aggregate dynamics. In Soil processes and the carbon cycle, ed. R. Lal, J. M. Kimble, R. F. Follett, and B. A. Stewart, 245–66. Boca Raton, Boston, New York, Washington, London: CRC Press LLC.
  • Golchin, A., J. M. Oades, J. O. Skjemstad, and P. Clarke. 1995. Structure and dynamic properties of soil organic matter reflected by 13C natural abundance, pyrolysis mass spectrometry and solid-state 13C NMR spectroscopy in density fractions of an Oxisol under forest and pasture. Australian Journal of Soil Research 33 (1):59–76. doi:10.1071/SR9950059.
  • Hao, X., M. You, X. Han, H. Li, W. Zou, and B. Xing. 2017. Redistribution of different organic carbon fractions in the soil profile of a typical Chinese Mollisol with land-use change. Communications in Soil Science & Plant Analysis 48 (20):2369–80. doi:10.1080/00103624.2017.1358741.
  • Hassink, J., and A. P. Whitmore. 1997. A model of the physical protection of organic matter in soils. Soil Science Society of America Journal 61 (1):131–39. doi:10.2136/sssaj1997.03615995006100010020x.
  • Haynes, R. J. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy 85:221–68. doi:10.1016/S0065-2113(04)85005-3.
  • Helfrich, M., H. Flessa, A. Dreves, and B. Ludwig. 2009. Is thermal oxidation at different temperatures suitable to isolate soil organic carbon fractions with different turnover? Journal of Plant Nutrition & Soil Science 173 (1):61–66. doi:10.1002/jpln.200700280.
  • Janzen, H. H. 1987. Soil organic matter characteristics after long-term cropping to various string wheat rotations. Canadian Journal of Soil Science 67 (4):845–56. doi:10.4141/cjss87-081.
  • Kögel-Knabner, I., and W. Amelung. 2021. Soil organic matter in major pedogenic soil groups. Geoderma 384:114785. doi:10.1016/j.geoderma.2020.114785.
  • Kolář, L., S. Kužel, J. Horáček, V. Čechová, J. Borová-Batt, and J. Peterka. 2009. Labile fractions of soil organic matter, their quantity and quality. Plant, Soil & Environment 55 (6):245–51. doi:10.17221/87/2009-PSE.
  • Krull, E., J. Baldock, and J. Skjemstad. 2001. Soil texture effects on decomposition and soil carbon storage, in: Net Ecosystem Exchange CRC Workshop Proceedings, Canberra, ACT, Australia; p. 103–10.
  • Lal, R. 2002. Soil carbon dynamics in cropland and rangeland. Environmental Pollution 116:353–62. doi:10.1016/S0269-7491(01)00211-1.
  • Lalić, B., D. T. Mihailović, and Z. Podraščanin. 2011. Buduće stanje klime u Vojvodini i očekivani uticaj na ratarsku proizvodnju. Field and Vegetable Crop Research 48:403–18.
  • Lei, L., J. A. Thompson, and L. M. McDonald. 2021. Soil organic carbon pools and indices in surface soil: Comparing a cropland, pasture, and forest soil in the central Appalachian region, West Virginia, U.S.A. Communications in Soil Science & Plant Analysis 53 (1):17–29. doi:10.1080/00103624.2021.1956524.
  • Levy, G. J., and A. I. Mamedov. 2002. High-energy-moisturecharacteristic aggregate stability as a predictor for seal formation. Soil Science Society of America Journal 66 (5):1603–09. doi:10.2136/sssaj2002.1603.
  • Loginow, W., W. Wisniewski, S. S. Gonet, and B. Ciescinska. 1987. Fractionation of organic C based on susceptibility to oxidation. Polish Journal of Soil Science 20:47–52.
  • Majumder, B., B. Mandal, and P. K. Bandyopadhyay. 2008. Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice–berseem agroecosystem. Biology & Fertility of Soils 44 (3):451–61. doi:10.1007/s00374-007-0226-6.
  • Martinez-Mena, M., J. Lopez, M. Almagro, J. Albaladejo, V. Castillo, R. Ortiz, and B. Fayos. 2011. Organic carbon enrichment in sediments: Effect of rainfall characteristics under different land uses in a Mediterranean area. Catena 94:36–42. doi:10.1016/j.catena.2011.02.005.
  • Mikutta, R., M. Kleber, M. S. Torn, and R. Jahn. 2006. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? Biogeochemistry 77 (1):25–56. doi:10.1007/s10533-005-0712-6.
  • Mills, A. J., and M. V. Fey. 2004. Frequent fires intensify soil crusting: Physicochemical feedback in the pedoderm of long-term burn experiments in South Africa. Geoderma 121:45–64. doi:10.1016/j.geoderma.2003.10.004.
  • Muñoz-Rojas, M. 2018. Soil quality indicators: Critical tools in ecosystem restoration. Current Opinion in Environmental Science & Health 5:47–52. doi:10.1016/j.coesh.2018.04.007.
  • Oades, J. M., and A. G. Waters. 1991. Aggregate hierarchy in soils. Australian Journal of Soil Research 29:815–28. doi:10.1071/SR9910815.
  • Piccolo, A. 2001. The supramolecular structure of humic substances. Soil Science 166:810–32. doi:10.1097/00010694-200111000-00007.
  • Poeplau, C., and A. Don. 2013. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201. doi:10.1016/j.geoderma.2012.08.003.
  • Prout, J. M., K. D. Shepherd, S. P. McGrath, G. J. Kirk, and S. M. Haefele. 2021. What is a good level of soil organic matter? An index based on organic carbon to clay ratio. European Journal of Soil Science 72 (6):2493–503. doi:10.1111/ejss.13012.
  • Ramesh, T., N. S. Bolan, M. B. Kirkham, H. Wijesekara, M. Kanchikerimath, C. S. Rao, S. Sandeep, J. Rinklebe, Y. S. Ok, B. U. Choudhury, et al. 2019. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy 156:1–107. doi:10.1016/bs.agron.2019.02.001.
  • Rovira, P., M. Jorba, and J. Romanyà. 2010. Active and passive organic matter fractions in Mediterranean forest soils. Biology & Fertility of Soils 46:55–369. doi:10.1007/s00374-009-0437-0.
  • Rühlmann, J. 1999. A new approach to estimating the pool of stable organic matter in soil using data from long-term field experiments. Plant and Soil 213 (1–2):149–60. doi:10.1023/A:1004552016182.
  • Schnitzer, M., and C. M. Monreal. 2011. Chapter three e Quo Vadis soil organic matter research? A biological link to the chemistry of humification. In Advances in Agronomy, ed. D. L. Sparks, 143–217. Cambridge, Massachusetts: Academic Press.
  • Schweizer, S. A., C. W. Mueller, C. Höschen, P. Ivanov, and I. Kögel-Knabner. 2021. The role of clay content and mineral surface area for soil organic carbon storage in an arable toposequence. Biogeochemistry 156:401–20. doi:10.1007/s10533-021-00850-3.
  • Šeremešić, S., and V. Ćirić. 2022. Labile soil carbon as an indicator of soil organic matter quality in the Province of Vojvodina, Serbia. In Advances in understanding soil degradation, ed. E. Saljnikov, L. Mueller, A. Lavrishchev, and F. Eulenstein, 667–86. Cham: Springer.
  • Shrestha, B. M., B. R. Singh, B. K. Sitaula, R. Lal, and R. M. Bajracharya. 2007. Soil aggregateand particle-associated organic carbon under different land uses in Nepal. Soil Science Society of America Journal 71 (4):1194–203. doi:10.2136/sssaj2006.0405.
  • Singh, S., A. Nouri, S. Singh, S. Anapalli, J. Lee, P. Arelli, and S. Jagadamma. 2020. Soil organic carbon and aggregation in response to thirty-nine years of tillage management in the southeastern US. Soil and Tillage Research 197:104523. doi:10.1016/j.still.2019.104523.
  • Spaccini, R., A. Zena, C. A. Igwe, J. S. C. Mbagwu, and A. Piccolo. 2001. Carbohydrates in water-stable aggregates and particle size fractions of forested and cultivated soils in two contrasting tropical ecosystems. Biogeochemistry 53:1–22. doi:10.1023/A:1010714919306.
  • Tirol-Padre, A., and J. K. Ladha. 2004. Assessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon. Soil Science Society of America Journal 68:969–78. doi:10.2136/sssaj2004.9690.
  • Tisdall, J. M., and J. M. Oades. 1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science 33:141–63. doi:10.1111/j.1365-2389.1982.tb01755.x.
  • von Lützow, M., I. Kögel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner. 2007. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology & Biochemistry 39 (9):2183–207. doi:10.1016/j.soilbio.2007.03.007.
  • von Lützow, M., I. Kögel-Knabner, K. Ekschmitt, E. Matzner, G. Guggenberger, B. Marschner, and H. Flessa. 2006. Stabilization of organic matter in temperate soils?: Mechanisms and their relevance under different soil conditions – a review. European Journal of Soil Science 57 (4):426–45. http://doi.org/10.1111/j.1365-2389.2006.00809.x,2006.
  • Vos, C., A. Jaconi, A. Jacobs, and A. Don. 2018. Hot regions of labile and stable soil organic carbon in Germany – Spatial variability and driving factors. SOIL 4:153–67. doi:10.5194/soil-4-153-2018.
  • Wander, M. 2004. Soil organic matter fractions and their relevance to soil function. In Soil organic matter in sustainable agriculture, ed. F. Magdoff and R. R. Weil, 67–102. Boca Raton, FL: CRC Press.
  • Wang, W. J., R. C. Dalal, P. W. Moody, and C. J. Smith. 2003. Relationships of soil respiration to microbial biomass, substrate availability, and clay content. Soil Biology & Biochemistry 35 (2):273–84. doi:10.1016/S0038-0717(02)00274-2.
  • Wang, Q., and S. Wang. 2011. Response of labile soil organic matter to changes in forest vegetation subtropical regions. Applied Soil Ecology 47 (3):210–16. doi:10.1016/j.apsoil.2010.12.004.
  • Wiesmeier, M., L. Urbanski, E. Hobley, B. Lang, M. von Lützow, E. Marin-Spiotta, B. van Wesemael, E. Rabot, M. Ließ, N. Garcia-Franco, et al. 2019. Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales. Geoderma 333:149–62. doi:10.1016/j.geoderma.2018.07.026.
  • Xavier, F. A. D., S. M. F. Maia, T. S. Oliveira, and E. de Sá Mendonça. 2009. Soil organic carbon and nitrogen stocks under tropical organic and conventional cropping systems in Northeastern Brazil. Communications in Soil Science & Plant Analysis 40 (19–20):2975–94. doi:10.1080/00103620903261304.
  • Zeng, R., Y. Wei, J. Huang, X. Chen, and C. Cai. 2021. Soil organic carbon stock and fractional distribution across central-south China. International Soil & Water Conservation Research 9:620–30. doi:10.1016/j.iswcr.2021.04.004.
  • Zhang, G., Z. P. Cao, and C. J. Hu. 2011. Soil organic carbon fractionation methods and their applications in farmland ecosystem research: A review. Chinese Journal of Applied Ecology 22 (7):1921–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.