89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Assessment of Carbon Pools and Stocks in an Inceptisol Under Long-Term Manuring and Fertilization in Rice-Wheat Cropping System: Comparison of Different Methods

, , , , , & show all
Pages 230-242 | Received 11 Jul 2023, Accepted 28 Sep 2023, Published online: 05 Oct 2023

References

  • Anderson, J. P. 1983. Total Carbon, Organic Carbon, and Organic Matter Page, A. L. ed. Methods of Soil Analysis Part 2: Chemical and Microbiological Properties Second edition. Agronomy Monographs 9: 539–579. doi:10.2134/agronmonogr9.2.2ed.c41.
  • Bell, M. J., P. W. Moody, R. D. Connolly, and B. J. Bridge. 1998. The role of active fractions of soil organic matter in physical and chemical fertility of ferrosols. Soil Research 36 (5):809–20. doi:10.1071/S98020.
  • Benbi, D. K., B. Kiranvir, S. Sharma, and S. SHARMA. 2015. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. Pedosphere 25 (4):534–45. doi:10.1016/S1002-0160(15)30034-5.
  • Benbi, D. K., and N. Senapati. 2010. Soil aggregation and carbon and nitrogen stabilization in relation to residue and manure application in rice–wheat systems in northwest India. Nutrient Cycling in Agroecosystems 87 (2):233–47. doi:10.1007/s10705-009-9331-2.
  • Bhardwaj, A. K., D. Rajwar, R. K. Yadav, S. K. Chaudhari, and D. K. Sharma. 2021. Nitrogen availability and use efficiency in wheat crop as influenced by the organic-input quality under major integrated nutrient management systems. Frontiers in Plant Science 12:752. doi:10.3389/fpls.2021.634448.
  • Blair, N., R. D. Faulkner, A. R. Till, and P. R. Poulton. 2006. Long-term management impacts on soil C, N and physical fertility: Part I: Broadbalk experiment. Soil and Tillage Research 91 (1–2):30–38. doi:10.1016/j.still.2005.11.002.
  • Blair, G. J., R. D. Lefroy, and L. Lisle. 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research 46 (7):1459–66. doi:10.1071/AR9951459.
  • Blake, G. R., and K. H. Hartge. 1986. Bulk density. In Methods of soil analysis (part 1), ed. A. Klute, 363–375. Madison, USA: Agronomy Monograph 9, American Society of Agronomy.
  • Chan, K. Y., A. Bowman, and A. Oates. 2001. Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Science 166 (1):61–67. doi:10.1097/00010694-200101000-00009.
  • Chatterjee, A., K. Cooper, A. Klaustermeier, R. Awale, and L. J. Cihacek. 2016. Does crop species diversity influence soil carbon and nitrogen pools? Agronomy Journal 108 (1):427–32. doi:10.2134/agronj2015.0316.
  • Chen, X., H. Zhang, X. Yao, W. Zeng, and W. Wang. 2021. Latitudinal and depth patterns of soil microbial biomass carbon, nitrogen, and phosphorus in grasslands of an agro‐pastoral ecotone. Land Degradation and Development 32 (14):3833–46. doi:10.1002/ldr.3978.
  • Choudhury, B. U., A. R. Fiyaz, K. P. Mohapatra, and S. Ngachan. 2016. Impact of land uses, agrophysical variables and altitudinal gradient on soil organic carbon concentration of North‐Eastern himalayan region of India. Land Degradation and Development 27 (4):1163–74. doi:10.1002/ldr.2338.
  • Culman, S. W., S. S. Snapp, J. M. Green, and L. E. Gentry. 2013. Short- and long-term labile soil carbon and nitrogen dynamics reflect management and predict corn agronomic performance. Agronomy Journal 105 (2):493–502. doi:10.2134/agronj2012.0382.
  • Das, D., B. S. Dwivedi, V. K. Singh, S. P. Datta, M. C. Meena, D. Chakraborty, K. K. Bandyopadhyay, R. Kumar, and R. P. Mishra. 2016. Long-term effects of fertilisers and organic sources on soil organic carbon fractions under a rice–wheat system in the Indo-Gangetic plains of north-west India. Soil Research 55 (3):296–308. doi:10.1071/SR16097.
  • Deb, S., P. B. S. Bhadoria, B. Mandal, A. Rakshit, and H. B. Singh. 2015. Soil organic carbon: Towards better soil health, productivity and climate change mitigation. Climate Change and Environmental Sustainability 3 (1):26–34. doi:10.5958/2320-642X.2015.00003.4.
  • Dey, A., B. S. Dwivedi, R. Bhattacharyya, S. P. Datta, M. C. Meena, R. K. Jat, R. K. Gupta, M. L. Jat, V. K. Singh, D. Das, et al. 2020. Effect of conservation agriculture on soil organic and inorganic carbon sequestration and lability: A study from a rice–wheat cropping system on a calcareous soil of the eastern Indo‐Gangetic plains. Soil Use and Management 36 (3):429–38. doi:10.1111/sum.12577.
  • Duval, M. E., J. A. Galantini, J. M. Martínez, and F. Limbozzi. 2018. Labile soil organic carbon for assessing soil quality: Influence of management practices and edaphic conditions. Catena 171:316–26. doi:10.1016/j.catena.2018.07.023.
  • Ghani, A., M. Dexter, and K. W. Perrott. 2003. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biology and Biochemistry 35 (9):1231–43. doi:10.1016/S0038-0717(03)00186-X.
  • Ghosh, S., B. Wilson, S. Ghoshal, N. Senapati, and B. Mandal. 2012. Organic amendments influence soil quality and carbon sequestration in the Indo-Gangetic plains of India. Agriculture, Ecosystems & Environment 156:134–41. doi:10.1016/j.agee.2012.05.009.
  • Gmach, M. R., K. Kaiser, M. R. Cherubin, C. E. P. Cerri, I. P. Lisboa, A. L. S. Vasconcelos, and M. Siqueira‐Neto. 2021. Soil dissolved organic carbon responses to sugarcane straw removal. Soil Use and Management 37 (1):126–37. doi:10.1111/sum.12663.
  • Gomez, K. A., and A. A. Gomez. 1984. Statistical procedures for agricultural research. New York: John Wiley and Sons.
  • Guo, L., G. Wu, Y. Li, C. Li, W. Liu, J. Meng, H. Liu, X. Yu, and G. Jiang. 2016. Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat–maize rotation system in Eastern China. Soil and Tillage Research 156:140–47. doi:10.1016/j.still.2015.10.010.
  • Haney, R. L., W. H. Brinton, and E. Evans. 2008. Estimating soil carbon, nitrogen, and phosphorus mineralization from short‐term carbon dioxide respiration. Communications in Soil Science and Plant Analysis 39 (17–18):2706–20. doi:10.1080/00103620802358862.
  • Hanway, J. J., and H. Heidal. 1952. Soil analysis methods as used in Iowa state college soil testing laboratory. Iowa State College of Agriculture Bulletin 57:1–31.
  • Hashim, M., S. Dhar, A. K. Vyas, and C. B. Singh. 2017. Yield trends and changes in physicochemical properties of soil in maize wheat cropping system under integrated nutrient management. Journal of Environmental Biology 38 (5):727. doi:10.22438/jeb/38/5/MS-240.
  • Kan, Z. R., W. X. Liu, W. S. Liu, R. Lal, Y. P. Dang, X. Zhao, and H. L. Zhang. 2022. Mechanisms of soil organic carbon stability and its response to no‐till: A global synthesis and perspective. Global Change Biology 28 (3):693–710. doi:10.1111/gcb.15968.
  • Kumar, M., D. K. Kundu, A. K. Ghorai, S. Mitra, and S. R. Singh. 2018. Carbon and nitrogen mineralization kinetics as influenced by diversified cropping systems and residue incorporation in inceptisols of eastern Indo-Gangetic plain. Soil and Tillage Research 178:108–17. doi:10.1016/j.still.2017.12.025.
  • Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304 (5677):1623–27. doi:10.1126/science.1097396.
  • Lal, R. 2016. Beyond COP 21: Potential and challenges of the “4 per thousand” initiative. Journal of Soil and Water Conservation 71 (1):20A–5A. doi:10.2489/jswc.71.1.20A.
  • Li, J., Y. Wen, Y. Li, X. Li, X. Yang, Z. Lin, Z. Song, J. M. Cooper, and B. Zhao. 2018. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China plain. Soil and Tillage Research 175:281–90. doi:10.1016/j.still.2017.08.008.
  • Majumder, B., B. Mandal, P. K. Bandyopadhyay, A. Gangopadhyay, P. K. Mani, A. L. Kundu, and D. Mazumdar. 2008. Organic amendments influence soil organic carbon pools and rice–wheat productivity. Soil Science Society of America Journal 72 (3):775–85. doi:10.2136/sssaj2006.0378.
  • Marschner, B., and K. Kalbitz. 2003. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113 (3–4):211–35. doi:10.1016/S0016-7061(02)00362-2.
  • Mourya, K. K., R. K. Jena, P. Ray, S. Ramachandran, G. K. Sharma, S. Hota, and S. K. Ray. 2021. Profile distribution of soil organic carbon fractions under different landforms in the Meghalaya plateau of India. Environment Conservation Journal 22 (3):9–16. doi:10.36953/ECJ.2021.22302.
  • Munera-Echeverri, J. L., V. Martinsen, L. T. Strand, G. Cornelissen, J. Mulder, and J. Paz-Ferreiro. 2020. Effect of conservation farming and biochar addition on soil organic carbon quality, nitrogen mineralization, and crop productivity in a light textured acrisol in the sub-humid tropics. PLoS One 15 (2):e0228717. doi:10.1371/journal.pone.0228717.
  • Nayak, A. K., B. Gangwar, A. K. Shukla, S. P. Mazumdar, A. Kumar, R. Raja, A. Kumar, V. Kumar, P. K. Rai, and U. Mohan. 2012. Long-term effect of different integrated nutrient management on soil organic carbon and its fractions and sustainability of rice–wheat system in Indo Gangetic plains of India. Field Crops Research 127:129–39. doi:10.1016/j.fcr.2011.11.011.
  • Nelson, D., and L. E. Sommers. 1983. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis Part 2: Chemical and Microbiological Properties, ed.A. L. Page, vol. 9, 2nd ed., 539–579. doi:10.2134/agronmonogr9.2.2ed.c29.
  • Nunes, M. R., K. S. Veum, P. A. Parker, S. H. Holan, D. L. Karlen, J. P. Amsili, H. M. van Es, S. A. Wills, C. A. Seybold, and T. B. Moorman. 2021. The soil health assessment protocol and evaluation applied to soil organic carbon. Soil Science Society of America Journal 85 (4):1196–213. doi:10.1002/saj2.20244.
  • Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soil by extracting with sodium bicarbonate. Washington DC: USDA Circular No. 989, USDA.
  • Purakayastha, T. J., R. Das, S. Kumari, Y. S. Shivay, S. Biswas, D. Kumar, and B. Chakrabarti. 2019. Impact of continuous organic manuring on mechanisms and processes of the stabilisation of soil organic C under rice–wheat cropping system. Soil Research 58 (1):73–83. doi:10.1071/SR19014.
  • Purakayastha, T. J., L. Rudrappa, D. Singh, A. Swarup, and S. Bhadraray. 2008. Long-term impact of fertilizers on soil organic carbon pools and sequestration rates in maize–wheat–cowpea cropping system. Geoderma 144 (1–2):370–78. doi:10.1016/j.geoderma.2007.12.006.
  • Raiesi, F. 2021. The quantity and quality of soil organic matter and humic substances following dry-farming and subsequent restoration in an upland pasture. Catena 202:105249. doi:10.1016/j.catena.2021.105249.
  • Ray, P., S. Chattaraj, S. Bandyopadhyay, R. K. Jena, S. K. Singh, and S. K. Ray. 2021. Shifting cultivation, soil degradation and agricultural land use planning in the North‐eastern hill region of India using geo‐spatial techniques. Land Degradation & Development 32 (14):3870–92. doi:10.1002/ldr.3986.
  • Rudrappa, L., T. J. Purakayastha, D. Singh, and S. Bhadraray. 2006. Long-term manuring and fertilization effects on soil organic carbon pools in a typic haplustept of semi-arid sub-tropical India. Soil and Tillage Research 88 (1–2):180–92. doi:10.1016/j.still.2005.05.008.
  • Sandhu, P. S., S. S. Walia, R. S. Gill, and G. S. Dheri. 2020. Thirty-one years study of integrated nutrient management on physico-chemical properties of soil under rice–wheat cropping system. Communications in Soil Science and Plant Analysis 51 (12):1641–57. doi:10.1080/00103624.2020.1791156.
  • Sayre, K. D., A. Limon-Ortega, B. Govaerts, A. Martinez, and M. Cruz-Cano. 2005. Effects following twelve years of irrigated permanent raised bed planting systems in northwest Mexico. Proceedings Conference of on Soil: Agriculture, Environment, Landscape, Prag, Ceska 29:99–106.
  • Singh, P., and D. K. Benbi. 2018. Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. Catena 166:171–80. doi:10.1016/j.catena.2018.04.006.
  • Singh, J. S., and V. K. Gupta. 2018. Soil microbial biomass: A key soil driver in management of ecosystem functioning. Science of the Total Environment 634:497–500. doi:10.1016/j.scitotenv.2018.03.373.
  • Singh, J., and S. Kumar. 2021. Seasonal changes of soil carbon fractions and enzyme activities in response to winter cover crops under long‐term rotation and tillage systems. European Journal of Soil Science 72 (2):886–99. doi:10.1111/ejss.13028.
  • Singh, M., B. Sarkar, S. Sarkar, J. Churchman, N. Bolan, S. Mandal, M. Menon, T. J. Purakayastha, and D. J. Beerling. 2018. Stabilization of soil organic carbon as influenced by clay mineralogy. In Advances in agronomy, Vol. 148, 33–84. Academic Press. doi:10.1016/bs.agron.2017.11.001.
  • Siregar, A., M. Kleber, R. Mikutta, and R. Jahn. 2005. Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. European Journal of Soil Science 56 (4):481–90. doi:10.1111/j.1365-2389.2004.00680.x.
  • Snyder, J. D., and J. A. Trofymow. 1984. A rapid accurate wet oxidation diffusion procedure for determining organic and inorganic carbon in plant and soil samples. Communications in Soil Science and Plant Analysis 15 (5):587–97. doi:10.1080/00103628409367499.
  • Song, Y., C. Liu, C. Song, X. Ma, X. Wang, J. Gao, S. Gao, and L. Wang. 2021. Linking soil organic carbon mineralization with soil microbial and substrate properties under warming in permafrost peatlands of Northeastern China. Catena 203:105348. doi:10.1016/j.catena.2021.105348.
  • Subbiah, B. V., and G. L. Asija. 1956. A rapid procedure for determination of available nitrogen in soils. Current Science 31:196–98.
  • Tirol-Padre, A., J. K. Ladha, A. P. Regmi, A. L. Bhandari, and K. Inubushi. 2007. Organic amendments affect soil parameters in two long-term rice-wheat experiments. Soil Science Society of America Journal 71 (2):442–52. doi:10.2136/sssaj2006.0141.
  • Tirol-Padre, A., K. Tsuchiya, K. Inubushi, and J. K. Ladha. 2005. Enhancing soil quality through residue management in a rice-wheat system in Fukuoka, Japan. Soil Science & Plant Nutrition 51 (6):849–60. doi:10.1111/j.1747-0765.2005.tb00120.x.
  • U.S. Soil Survey Staff. 1975. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (no. 436). Washington DC: US Government Print.
  • Verma, B. C., S. P. Datta, R. K. Rattan, and S. 2010. Monitoring changes in soil organic carbon pools, nitrogen, phosphorus, and sulfur under different agricultural management practices in the tropics. Environmental Monitoring and Assessment 171:579–93.
  • von Lützow, M., I. Kögel-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner. 2007. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry 39 (9):2183–207. doi:10.1016/j.soilbio.2007.03.007.
  • Weil, R. R., K. R. Islam, M. A. Stine, J. B. Gruver, and S. E. Samson-Liebig. 2003. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture 18 (1):3–17. doi:10.1079/AJAA2003003.
  • Yadav, R. K., T. J. Purakayastha, M. A. Khan, and S. C. Kaushik. 2017. Long-term impact of manuring and fertilization on enrichment, stability and quality of organic carbon in inceptisol under two potato-based cropping systems. Science of the Total Environment 609:1535–43. doi:10.1016/j.scitotenv.2017.07.128.
  • Yadav, R. K., T. J. Purakayastha, C. M. Parihar, and M. A. Khan. 2017. Assessment of carbon pools in inceptisol under potato (solanum tuberosum) based cropping systems in Indo-Gangetic plains. Indian Journal of Agricultural Sciences 87 (3):306–11. doi:10.56093/ijas.v87i3.68604.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.