92
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Trends in Legume-Rhizobia Symbiosis in Remediation of Mercury-Contaminated Agricultural Soils

&
Pages 916-930 | Received 11 Apr 2022, Accepted 14 Nov 2023, Published online: 25 Nov 2023

References

  • Abou-Shanab, R. A. I., P. van Berkum, and J. S. Angle. 2007. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in ni-rich serpentine soil and in the rhizosphere of alyssum murale. Chemosphere 68 (2):360–67. doi:10.1016/j.chemosphere.2006.12.051.
  • Ali, H., E. Khan, and M. A. Sajad. 2013. Phytoremediation of heavy metals—concepts and applications. Chemosphere 91 (7):869–81. doi:10.1016/J.CHEMOSPHERE.2013.01.075.
  • Arregui, G., P. Hipólito, P. Balomenos, D. García-Rodríguez, V. Lara-Dampier, B. Pallol, H. P. Varela, D. Tavakoli Zaniani, T. Paape, T. Coba de la Peña, et al. 2021. Mercury-tolerant ensifer medicae strains display high mercuric reductase activity and a protective effect on nitrogen fixation in Medicago truncatula nodules under mercury stress. Frontiers in Plant Science 11:11. doi:10.3389/fpls.2020.560768.
  • Awa, S. H., and T. Hadibarata. 2020. Removal of heavy metals in contaminated soil by phytoremediation mechanism: A review. Water, Air, & Soil Pollution 231 (2):47. doi:10.1007/s11270-020-4426-0.
  • Baig, M. A., J. Ahmad, R. Bagheri, A. A. Ali, A. A. Al-Huqail, M. M. Ibrahim, and M. I. Qureshi. 2018. Proteomic and ecophysiological responses of soybean (glycine max L.) root nodules to pb and hg stress. BMC Plant Biology 18 (1):1–21.
  • Barkay, T., S. M. Miller, and A. O. Summers. 2003. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews 27 (2–3):355–84. doi:10.1016/S0168-6445(03)00046-9.
  • Basir-Cyio, M., M. Isrun-Baso, K. Nakazawa, T. Mahfudz-Muchtar, M. Napitupulu, A. Anshary, R. A. Rauf, and S. Laude. 2020. The effect of traditional gold mining to land degradation, mercury contamination and decreasing of agricultural productivity. Bulgarian Journal of Agricultural Science 26 (3):612–21.
  • Bekuzarova, S. A., A. D. Bekmurzov, I. A. Datieva, G. V. Lushchenko, and M. G. Salbieva. 2020. Clover nodule bacteria as bioindicators of soils contaminated with heavy metals. IOP Conference Series: Earth and Environmental Science, May 26-30, ECS Meeting, San Francisco 421: 062043.
  • Bernhoft, R. A. 2012. Mercury toxicity and treatment: A review of the literature. Journal of Environmental and Public Health 2012:46050. doi:10.1155/2012/460508.
  • Bettin, H., and H. Fehlauer. 2004. Density of mercury—measurements and reference values. Metrologia 41 (2):S16. doi:10.1088/0026-1394/41/2/S02.
  • Borucki, W. 2007. Proliferation of peroxisomes in pea root nodules-an influence of NaCl-or Hg2+-stress conditions. Acta Societatis Botanicorum Poloniae 76 (4):287–98. doi:10.5586/asbp.2007.032.
  • Chandra, R., S. Yadav, and S. Yadav. 2017. Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecological Engineering 98:134–45. doi:10.1016/J.ECOLENG.2016.10.017.
  • De Lajudie, P. M., M. Andrews, J. Ardley, B. Eardly, E. Jumas-Bilak, N. Kuzmanović, F. Lassalle, K. Lindström, R. Mhamdi, E. Martínez-Romero, et al. 2019. Minimal standards for the description of new genera and species of Rhizobia and Agrobacteria. International Journal of Systematic and Evolutionary Microbiology 69 (7):1852–63. doi:10.1099/ijsem.0.003426.
  • Ekyastuti, W., D. Astiani, and E. Roslinda. 2016. Prospect of indigenous plant species for revegetation in the tailings area of ex community gold mine. Biodiversitas Journal of Biological Diversity 17 (2):764–68. doi:10.13057/biodiv/d170252.
  • Fagorzi, C., A. Checcucci, G. C. Dicenzo, K. Debiec-Andrzejewska, L. Dziewit, F. Pini, and A. Mengoni. 2018. Harnessing rhizobia to Improve heavy-metal phytoremediation by Legumes. Genes 9 (11):542. doi:10.3390/genes9110542.
  • Górska-Czekaj, M., and W. Borucki. 2013. A correlative study of hydrogen peroxide accumulation after mercury or copper treatment observed in root nodules of Medicago truncatula under light, confocal and electron microscopy. Micron 52–53:24–32. doi:10.1016/j.micron.2013.07.007.
  • Gworek, B., W. Dmuchowski, and A. H. Baczewska-Dąbrowska. 2020. Mercury in the terrestrial environment: A review. Environmental Sciences Europe 32 (1):1. doi:10.1186/s12302-020-00401-x.
  • Hang, X., F. Gan, J. Wang, X. Chen, Y. Chen, H. Wang, J. Zhou, and C. Du. 2016. Soil mercury accumulation and transference to different crop grains. Human and Ecological Risk Assessment: An International Journal 22 (5):1242–52.
  • Hao, X., S. Taghavi, P. Xie, M. J. Orbach, H. A. Alwathnani, C. Rensing, and G. Wei. 2014. Phytoremediation of heavy and transition metals aided by Legume-Rhizobia Symbiosis. International Journal of Phytoremediation 16 (2):179–202. doi:10.1080/15226514.2013.773273.
  • Horvat, M., N. Nolde, V. Fajon, V. Jereb, M. Logar, S. Lojen, R. Jacimovic, I. Falnoga, Q. Liya, J. Faganeli, et al. 2003. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China. Science of the Total Environment 304(1–3):231–56. doi:10.1016/S0048-9697(02)00572-7.
  • Israr, M., S. Sahi, R. Datta, and D. Sarkar. 2006. Bioaccumulation and physiological effects of mercury in Sesbania Drummondii. Chemosphere 65 (4):591–98. doi:10.1016/J.CHEMOSPHERE.2006.02.016.
  • Jaiswal, S. K., J. Naamala, and F. D. Dakora. 2018. Nature and Mechanisms of Aluminium Toxicity, Tolerance and Amelioration in Symbiotic Legumes and Rhizobia. Biology and Fertility of Soils 54 (3):309–18. doi:10.1007/s00374-018-1262-0.
  • Jaworska, H., and J. Klimek. 2021. Assessment of the impact of a motorway on content and spatial distribution of mercury in adjacent agricultural soils. Minerals 11 (11):1221. doi:10.3390/min11111221.
  • Khalid, S., M. Shahid, N. K. Niazi, B. Murtaza, I. Bibi, and C. Dumat. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration 182:247–68. doi:10.1016/j.gexplo.2016.11.021.
  • Klonowska, A., L. Moulin, J. K. Ardley, F. Braun, M. M. Gollagher, J. D. Zandberg, D. V. Marinova, M. Huntemann, T. B. K. Reddy, N. J. Varghese, et al. 2020. Novel heavy metal resistance gene clusters are present in the genome of cupriavidus neocaledonicus STM 6070, a new species of mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil. BMC Genomics 21 (1):214. doi:10.1186/s12864-020-6623-z.
  • Krämer, U. 2010. Metal Hyperaccumulation in Plants. Annual Review of Plant Biology 61 (1):517–34. doi:10.1146/annurev-arplant-042809-112156.
  • Kuiper, I., E. L. Lagendijk, G. V. Bloemberg, and B. J. J. Lugtenberg. 2004. Rhizoremediation: A Beneficial Plant-Microbe Interaction. Molecular Plant-Microbe Interactions MPMI 17 (1):6–15. doi:10.1094/MPMI.2004.17.1.6.
  • Kumari, S., A. Amit, R. Jamwal, N. Mishra, and D. K. Singh. 2020. Recent developments in environmental mercury bioremediation and its toxicity: A review. Environmental Nanotechnology, Monitoring and Management 13:100283. doi:10.1016/j.enmm.2020.100283.
  • Langford, N. J., and R. E. Ferner. 1999. Toxicity of mercury. Journal of Human Hypertension 13 (10):651–56. doi:10.1038/sj.jhh.1000896.
  • Laranjo, M., A. Alexandre, and S. Oliveira. 2014. Legume Growth-Promoting Rhizobia: An Overview on the Mesorhizobium Genus. Microbiological Research 169 (1):2–17. doi:10.1016/j.micres.2013.09.012.
  • Li, L., Q. Lin, X. Li, T. Li, X. He, D. Li, and Y. Tao. 2019. Dynamics and potential roles of abundant and rare subcommunities in the bioremediation of cadmium-contaminated paddy soil by Pseudomonas Chenduensis. Applied Microbiology and Biotechnology 103 (19):8203–14. doi:10.1007/s00253-019-10059-y.
  • Lomonte, C., A. I. Doronila, D. Gregory, A. J. M. Baker, and S. D. Kolev. 2010. Phytotoxicity of biosolids and screening of selected plant species with potential for mercury phytoextraction. Journal of Hazardous Materials 173 (1–3):494–501. doi:10.1016/j.jhazmat.2009.08.112.
  • Lund, P. A., and N. L. Brown. 1989. Regulation of Transcription in Escherichia Coli from the mer and MerR promoters in the transposon Tn501. Journal of Molecular Biology 205 (2):343–53. doi:10.1016/0022-2836(89)90345-8.
  • Magos, L., and T. W. Clarkson. 2006. Overview of the clinical toxicity of mercury. Annals of Clinical Biochemistry 43 (4):257–68. doi:10.1258/000456306777695654.
  • Makarova, A. S., E. Nikulina, and P. Fedotov. 2022. Induced phytoextraction of mercury. Separation & Purification Reviews 51 (2):174–94. doi:10.1080/15422119.2021.1881794.
  • Makarova, A. S., E. A. Nikulina, N. V. Tsirulnikova, T. S. Avdeenkova, K. V. Pishaeva, A. P. Glinushkin, and I. Y. Podkovyrov. 2021. Screening of various chemical additives, including S-Containing complexion to enhance phytoextraction of mercury by white creeping clover (Trifolium repens L.). In IOP Conference Series: Earth and Environmental Science, 663:012041. doi:10.1088/1755-1315/663/1/012041.
  • Malar, S., S. V. Sahi, P. J. C. Favas, and P. Venkatachalam. 2015. Assessment of mercury heavy metal toxicity-induced physiochemical and molecular changes in sesbania grandiflora L. International Journal of Environmental Science and Technology 12 (10):3273–82. doi:10.1007/s13762-014-0699-4.
  • Marrugo-Negrete, J., J. Durango-Hernández, L. Díaz-Fernández, I. Urango-Cárdenas, H. Araméndiz-Tatis, V. Vergara-Flórez, A. G. Bravo, and S. Díez. 2020. Transfer and bioaccumulation of mercury from soil in Cowpea in gold mining sites. Chemosphere 250:126142. doi:10.1016/j.chemosphere.2020.126142.
  • Marrugo-Negrete, J., S. Marrugo-Madrid, J. Pinedo-Hernández, J. Durango-Hernández, and S. Díez. 2016. Screening of native plant species for phytoremediation potential at a hg-contaminated mining site. Science of the Total Environment 542:809–16. doi:10.1016/j.scitotenv.2015.10.117.
  • Mårtensson, A. M. 1992. Effects of agrochemicals and heavy metals on fast-growing rhizobia and their symbiosis with small-seeded legumes. Soil Biology and Biochemistry 24 (5):435–45. doi:10.1016/0038-0717(92)90206-D.
  • Mathieu, S., L. G. Dover, G. S. Besra, J. Parkhill, and N. L. Brown. 2009. Sequence and analysis of a plasmid-encoded mercury resistance operon from mycobacterium marinum identifies MerH, a new mercuric ion transporter. Journal of Bacteriology 191 (1):439–44. doi:10.1128/JB.01063-08.
  • Mbanga, O., S. Ncube, H. Tutu, L. Chimuka, and E. Cukrowska. 2019. Mercury accumulation and biotransportation in wetland biota affected by gold mining. Environmental Monitoring and Assessment 191 (3):3. doi:10.1007/s10661-019-7329-z.
  • Mohamad, R., G. Maynaud, A. Le Quéré, C. Vidal, A. Klonowska, E. Yashiro, J. C. Cleyet-Marel, B. Brunel, and F. E. Loeffler. 2017. Ancient heavy metal contamination in soils as a driver of tolerant anthyllis vulneraria rhizobial communities. Applied and Environmental Microbiology 83 (2). doi:10.1128/AEM.01735-16.
  • Mondal, N. K., C. Das, and J. K. Datta. 2015. Effect of mercury on seedling growth, nodulation and ultrastructural deformation of Vigna radiata (L) Wilczek. Environmental Monitoring and Assessment 187 (241). doi:10.1007/s10661-015-4484-8.
  • Montiel-Rozas, M. M., E. Madejón, and P. Madejón. 2016. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environmental Pollution 216:273–81. doi:10.1016/j.envpol.2016.05.080.
  • Mukhopadhyay, D., H. Yu, G. Nucifora, and T. K. Misra. 1991. Purification and functional characterization of MerD: A coregulator of the mercury resistance operon in gram-negative bacteria. Journal of Biological Chemistry 266 (28):18538–42. doi:10.1016/s0021-9258(18)55095-x.
  • Nascimento, A. M. A., and E. Chartone-Souza. 2003. Operon mer: Bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genetics and Molecular Research 2 (1):92–101.
  • Ninkov, J., S. Marković, D. Banjac, J. Vasin, S. Milić, B. Banjac, and A. Mihailović. 2017. Mercury content in agricultural soils (Vojvodina Province, Serbia). Environmental Science and Pollution Research 24 (12):10966–75. doi:10.1007/s11356-016-7897-1.
  • Nocelli, N., P. C. Bogino, E. Banchio, and W. Giordano. 2016. Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials 9 (6):418. doi:10.3390/ma9060418.
  • Nonnoi, F., A. Chinnaswamy, V. S. García de la Torre, T. Coba de la Peña, M. M. Lucas, and J. J. Pueyo. 2012. Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. And Trifolium spp.) growing in mercury-contaminated soils. Applied Soil Ecology 61 (October):49–59. doi:10.1016/j.apsoil.2012.06.004.
  • Ohyama, T. 2017. The role of legume-rhizobium symbiosis in sustainable agriculture. In Legume nitrogen fixation in soils with low phosphorus availability, ed., S. Sulieman and L. S. Tran. Cham: Springer. doi:10.1007/978-3-319-55729-8_1.
  • Oves, M., A. Zaidi, and M. S. Khan. 2010. Role of metal tolerant microbes in legume improvement. In Microbes for legume improvement, ed. M. S. Khan, J. Musarrat, and A. Zaidi, 337–52. Vienna, Austria: Springer. doi:10.1007/978-3-211-99753-6_14.
  • Pajuelo, E., I. D. Rodríguez-Llorente, A. Lafuente, and M. Á. Caviedes. 2011. Legume–Rhizobium Symbioses as a tool for bioremediation of heavy metal polluted soils. In Biomanagement of metal-contaminated soils, ed. M. S. Khan, A. Zaidi, R. Goel, and J. Musarrat, 95. Dordrecht, Netherlands: Springer. doi:10.1007/978-94-007-1914-9_4.
  • Parkhill, J., and N. L. Brown. 1990. Site-specific insertion and deletion mutants in the mer promoter-operator region of Tn501; the nineteen base-pair spacer is essential for normal induction of the promoter by MerR. Nucleic Acids Research 18 (17):5157–62. doi:10.1093/nar/18.17.5157.
  • Pathak, A., R. Jaswal, and A. Chauhan. 2020. Genomic characterization of a mercury resistant Arthrobacter sp. H-02-3 reveals the presence of heavy metal and antibiotic resistance determinants. Frontiers in Microbiology 10:10. doi:10.3389/fmicb.2019.03039.
  • Patra, M., and A. Sharma. 2000. Mercury toxicity in plants. The Botanical Review 66 (3):379–422. doi:10.1007/BF02868923.
  • Pinto, A. P., I. Simões, and A. M. Mota. 2008. Cadmium Impact on Root Exudates of Sorghum and Maize Plants: A Speciation Study. Journal of Plant Nutrition 31 (10):1746–55. doi:10.1080/01904160802324829.
  • Priyadarshanee, M., S. Chatterjee, S. Rath, H. R. Dash, and S. Das. 2022. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. Journal of Hazardous Materials 423:126985. doi:10.1016/j.jhazmat.2021.126985.
  • Qu, R., G. Han, M. Liu, and X. Li. 2019. The mercury behavior and contamination in soil profiles in Mun River Basin, Northeast Thailand. International Journal of Environmental Research and Public Health 16 (21):4131. doi:10.3390/ijerph16214131.
  • Quiñones, M. A., S. Fajardo, M. Fernández‐Pascual, M. M. Lucas, and J. J. Pueyo. 2021. Nodulated white lupin plants growing in contaminated soils accumulate unusually high mercury concentrations in their nodules, roots and especially cluster roots. Horticulturae 7 (9):302. doi:10.3390/horticulturae7090302.
  • Quiñones, M. A., B. Ruiz-Díez, S. Fajardo, M. A. López-Berdonces, P. L. Higueras, and M. Fernández-Pascual. 2013. Lupinus albus plants acquire mercury tolerance when inoculated with an hg-resistant bradyrhizobium strain. Plant Physiology and Biochemistry 73:168–75. doi:10.1016/j.plaphy.2013.09.015.
  • Rodríguez, L., J. Alonso-Azcárate, J. Villaseñor, and L. Rodríguez-Castellanos. 2016. EDTA and hydrochloric acid effects on mercury accumulation by Lupinus Albus. Environmental Science and Pollution Research 23 (24):24739–48. doi:10.1007/s11356-016-7680-3.
  • Rodríguez, E. N., M. J. McLaughlin, and D. J. Pennock. 2018. Soil pollution: A hidden Reality. environmental policy and Law. Vol. 12. Rome, Italy: FAO, UN. doi:10.1016/S0378-777X(84)80002-5.
  • Royal Society of Chemistry. Periodic Table. 2022. Accessed January 23, 2022. https://www.rsc.org/periodic-table/element/80/mercury.
  • Ruiz-Díez, B., S. Fajardo, M. Del Rosario de Felipe, and M. Fernández-Pascual. 2012. Characterization of rhizobia from legumes of agronomic interest grown in semi-arid areas of Central Spain relates genetic differences to soil properties. Journal of Basic Microbiology 52 (1):66–78. doi:10.1002/jobm.201100058.
  • Ruiz-Díez, B., M. A. Quiñones, S. Fajardo, M. A. López, P. Higueras, and M. Fernández-Pascual. 2012. Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high hg-contaminated soils. Applied Microbiology and Biotechnology 96 (2):543–54. doi:10.1007/s00253-011-3832-z.
  • Saha, J. K., S. M. Rajendiran, C. M. Vassanda, M. L. Dotaniya, K. Samaresh, and K. P. Ashok. eds. 2017. Environmental chemistry for a sustainable world soil pollution-an emerging threat to agriculture. Beach Road, Singapore: Springer Nature. http://www.springer.com/series/8380
  • Shahid, N. M., S. Khalid, I. Bibi, J. Bundschuh, N. Khan Niazi, and C. Dumat. 2020. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Science of the Total Environment 711:134749. doi:10.1016/j.scitotenv.2019.134749.
  • Sharma, P. 2021. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresource Technology 328:124835. doi:10.1016/j.biortech.2021.124835.
  • Sone, Y., R. Nakamura, H. Pan-Hou, T. Itoh, and M. Kiyono. 2013. Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia Coli. Biological and Pharmaceutical Bulletin 36 (11):1835–41. doi:10.1248/bpb.b13-00554.
  • Sone, Y., H. Pan-Hou, R. Nakamura, K. Sakabe, and M. Kiyono. 2010. Roles played by MerE and MerT in the transport of inorganic and organic mercury compounds in gram-negative bacteria. Journal of Health Science 56 (1):123–27. doi:10.1248/jhs.56.123.
  • Tiodar, E. D., C. L. Văcar, and D. Podar. 2021. Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: Challenges and perspectives. International Journal of Environmental Research and Public Health 18 (5):1–38. doi:10.3390/ijerph18052435.
  • Udvardi, M., and P. S. Poole. 2013. Transport and Metabolism in Legume-Rhizobia Symbioses. Annual Review of Plant Biology 64 (1):781–805. doi:10.1146/annurev-arplant-050312-120235.
  • UN Environment Programme. 2019. Global mercury assessment 2018. Geneva, Switzerland: UN Environment Programme, Chemicals and Health Branch.
  • U.S. Environmental Protection Agency. 2021. Mercury Emissions: The Global Context. Accessed January 23, 2022. https://www.epa.gov/international-cooperation/mercury-emissions-global-context.
  • Wang, J., X. Feng, C. W. N. Anderson, G. Qiu, Z. Bao, and L. Shang. 2014. Effect of cropping systems on heavy metal distribution and mercury fractionation in the Wanshan Mining District, China: Implications for environmental management. Environmental Toxicology and Chemistry 33 (9):2147–55. doi:10.1002/etc.2664.
  • Wang, L., D. Hou, Y. Cao, Y. S. Ok, F. M. G. Tack, J. Rinklebe, and D. O’Connor. 2020. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environment International 134:105281. doi:10.1016/j.envint.2019.105281.
  • Wang, C., Z. Wang, Y. Gao, and X. Zhang. 2021. Planular-vertical distribution and pollution characteristics of cropland soil hg and the Estimated soil–air exchange fluxes of gaseous hg over croplands in Northern China. Environmental Research 195:110810. doi:10.1016/j.envres.2021.110810.
  • World Health Organization. 2017. Mercury and health. Accessed January 23, 2022. https://www.who.int/news-room/fact-sheets/detail/mercury-and-health.
  • Xia, J., J. Wang, L. Zhang, C. W. N. Anderson, X. Wang, H. Zhang, Z. Dai, and X. Feng. 2020. Screening of native low mercury accumulation crops in a mercury-polluted mining region: Agricultural planning to manage mercury risk in farming communities. Journal of Cleaner Production 262:121324. doi:10.1016/j.jclepro.2020.121324.
  • Yang, L., Y. Zhang, F. Wang, Z. Luo, S. Guo, and U. Strähle. 2020. Toxicity of Mercury: Molecular Evidence. Chemosphere 245:125586. doi:10.1016/j.chemosphere.2019.125586.
  • Yuan, K., X. Chen, P. Chen, Y. Huang, J. Jiang, T. Luan, B. Chen, and X. Wang. 2019. Mercury methylation-related microbes and genes in the sediments of the Pearl River Estuary and the South China Sea. Ecotoxicology & Environmental Safety 185:109722. doi:10.1016/j.ecoenv.2019.109722.
  • Zhu, H., Y. Teng, X. Wang, L. Zhao, W. Ren, Y. Luo, and P. Christie. 2021. Changes in clover rhizosphere microbial community and diazotrophs in mercury-contaminated soils. Science of the Total Environment 767:145473. doi:10.1016/j.scitotenv.2021.145473.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.