111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Total Phosphorous and Mineral Content Determination in Rock Phosphates using ICP-MS

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 944-958 | Received 24 Jan 2023, Accepted 15 Nov 2023, Published online: 23 Nov 2023

References

  • Arshad, H., S. R. Malik, M. U. Tahir, W. A. Khan, and M. Usman. 2014. Enhancement of P2O5 content in SSP made from local rock phosphate of Pakistan. International Journal of Innovation and Applied Studies 9 (1):484–89.
  • Bandura, D. R., V. I. Baranov, and S. D. Tanner. 2001. Reaction chemistry and collisional processes in multipole devices for resolving isobaric interferences in ICP–MS. Fresenius’ Journal of Analytical Chemistry 370 (5):454–70. doi:10.1007/s002160100869.
  • Barton, C. J. 1948. Photometric analysis of phosphate rock. Analytical Chemistry 20 (11):1068–73.
  • Begum, M., G. Narayanasamy, and D. R. Biswas. 2004. Phosphorus supplying capacity of phosphate rocks as influenced by compaction with water-soluble P fertilizers. Nutrient Cycling in Agroecosystems 68 (1):73–84. doi:10.1023/B:FRES.0000012237.35121.6f.
  • Biswas, D. R. 2011. Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato–soybean cropping sequence in an inceptisol of indo-gangetic Plains of India. Nutrient Cycling in Agroecosystems 89 (1):15–30. doi:10.1007/s10705-010-9372-6.
  • Biswas, D. R., and G. Narayanasamy. 2006. Rock phosphate enriched compost: An approach to improve low-grade Indian rock phosphate. Bioresource Technology 97 (18):2243–51. doi:10.1016/j.biortech.2006.02.004.
  • Cantarero, A., M. B. López, J. Mahía, M. A. Maestro, and A. Paz. 2002. Determination of total and dissolved phosphorus in agricultural runoff samples by inductively coupled plasma mass spectrometry. Communications in Soil Science and Plant Analysis 33 (15–18):3431–36. doi:10.1081/CSS-120014536.
  • Carne, G., S. Leconte, V. Sirot, N. Breysse, P. M. Badot, A. Bispo, I. Z. Deportes, C. Dumat, G. Rivière, and A. Crépet. 2021. Mass balance approach to assess the impact of cadmium decrease in mineral phosphate fertilizers on health risk: The case-study of French agricultural soils. Science of the Total Environment 760:143374. doi:10.1016/j.scitotenv.2020.143374.
  • Chen, Z., W. He, M. Beer, M. Megharaj, and R. Naidu. 2009. Speciation of glyphosate, phosphate and aminomethylphosphonic acid in soil extracts by ion chromatography with inductively coupled plasma mass spectrometry with an octopole reaction system. Talanta 78 (3):852–56. doi:10.1016/j.talanta.2008.12.052.
  • Crosland, A. R., F. J. Zhao, S. P. McGrath, and P. W. Lane. 1995. Comparison of aqua regia digestion with sodium carbonate fusion for the determination of total phosphorus in soils by inductively coupled plasma atomic emission spectroscopy (ICP). Communications in Soil Science and Plant Analysis 26 (9–10):1357–68. doi:10.1080/00103629509369377.
  • El Zrelli, R., L. Rabaoui, N. Daghbouj, H. Abda, S. Castet, C. Josse, P. van Beek, M. Souhaut, S. Michel, N. Bejaoui, et al. 2018. Characterization of phosphate rock and phosphogypsum from gabes phosphate fertilizer factories (SE Tunisia): High mining potential and implications for environmental protection. Environmental Science and Pollution Research 25 (15):14690–702. doi:10.1007/s11356-018-1648-4.
  • FAI. 2019. The Fertiliser (Control) Order 1985, 10. New Delhi, India: The Fertiliser Association of India. Shaheed Jit Singh Marg.
  • Gasparatos, D., and C. Haidouti. 2001. A comparison of wet oxidation methods for determination of total phosphorus in soils. Journal of Plant Nutrition and Soil Science 164 (4):435–39. doi:10.1002/1522-2624(200108)164:4<435:AID-JPLN435>3.0.CO;2-5.
  • Hart, M. R., and P. S. Cornish. 2009. Comparison of bicarbonate-extractable soil phosphorus measured by ICP-AES and colourimetry in soils of south-eastern New South Wales. Soil Research 47 (7):742–46. doi:10.1071/SR09034.
  • Houle, J. J., D. R. Macadam, T. P. Ballestero, and T. A. Puls. 2022. Utilizing in situ ultraviolet-visual spectroscopy to measure nutrients and sediment concentrations in storm water runoff. Journal of Sustainable Water in the Built Environment 8 (4):04022012. doi:10.1061/JSWBAY.0000994.
  • ICH-2005. 2005. ICH harmonised tripartite guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1). https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.
  • Ivanov, K., P. Zaprjanova, M. Petkova, V. Stefanova, V. Kmetov, D. Georgieva, and V. Angelova. 2012. Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils. Spectrochimica Acta Part B: Atomic Spectroscopy 71:117–22. doi:10.1016/j.sab.2012.05.013.
  • Kara, D., C. Özsavaşçi, and M. Alkan. 1997. Investigation of suitable digestion methods for the determination of total phosphorus in soils. Talanta 44 (11):2027–32. doi:10.1016/S0039-9140(97)00014-3.
  • Kassner, J. L., H. P. Crammer, and M. A. Ozier. 1948. Determination of phosphorus pentoxide in phosphate rock. Analytical Chemistry 20 (11):1052–55. doi:10.1021/ac60023a017.
  • Kauwenbergh, S. 2010. International fertiliser development centre. Washington, DC, USA: IFDC News. https://ifdc.org/2010/09/22/ifdc-report-indicates-adequate-phosphorus-resources-available-to-meet-global-food-demands/.
  • Kovačevič, M., W. Goessler, N. Mikac, and M. Veber. 2005. Matrix effects during phosphorus determination with quadrupole inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry 383 (1):145–51. doi:10.1007/s00216-005-3389-8.
  • Kumari, K., and V. K. Phogat. 2008. Rock phosphate: Its availability and solubilization in the soil–A review. Agricultural Reviews 29 (2):108–16.
  • Liu, Y., L. Feng, H. Hu, G. Jiang, Z. Cai, and Y. J. Deng. 2012. Phosphorus release from low-grade rock phosphates by low molecular weight organic acids. Journal of Food, Agriculture and Environment 10 (1):1001–07.
  • Mallarino, A. P. 2003. Field calibration for corn of the mehlich-3 soil phosphorus test with colorimetric and inductively coupled plasma emission spectroscopy determination methods. Soil Science Society of America Journal 67 (6):1928–34. doi:10.2136/sssaj2003.1928.
  • McBride, M. B., and G. Spiers. 2001. Trace element content of selected fertilizers and dairy manures as determined by ICP–MS. Communications in Soil Science and Plant Analysis 32 (1–2):139–56. doi:10.1081/CSS-100102999.
  • McCurdy, E., G. Woods, D. Potter, and L. B. Park. 2006. Unmatched removal of spectral interferences in ICP-MS using the agilent octopole reaction system with Helium collision mode, Application note ELakeside Business Park. Agilent: Cheadle Royal, Cheshire.
  • Murphy, J. A. M. E. S., and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5.
  • Nathan, R. J., A. K. Jain, and R. J. Rosengren. 2022. Biosorption of heavy metals from water: Mechanism, critical evaluation and translatability of methodology. Environmental Technology Reviews 11 (1):91–117. doi:10.1080/21622515.2022.2078232.
  • Pittman, J. J., H. Zhang, J. L. Schroder, and M. E. Payton. 2005. Differences of phosphorus in Mehlich 3 extracts determined by colorimetric and spectroscopic methods. Communications in Soil Science and Plant Analysis 36 (11–12):1641–59. doi:10.1081/CSS-200059112.
  • Sajid, M., M. I. Ahmad, S. S. Shafqat, S. Mulk, and M. K. Pasha. 2020. Study of phosphorous oxide (P2O5) and iron oxide (Fe2O3) in rock phosphate of Hazara basin of Pakistan. International Journal of Agrochemistry 6 (1):46–51. doi:10.37628/ijac.v6i1.937.
  • Sante, G. 2021. 11312/2021 analytical quality control and method validation procedures for pesticide residues analysis in food and feed. Sante 11813:21–22.
  • Siddique, A., A. Hassan, S. R. Khan, A. Inayat, A. Nazir, and M. Iqbal. 2018. Appraisal of heavy metals and nutrients from phosphate rocks, Khyber Pakhtunkhwa, Pakistan. Chemistry International 4 (1):1.
  • Sleno, L. 2012. The use of mass defect in modern mass spectrometry. Journal of Mass Spectrometry 47 (2):226–36. doi:10.1002/jms.2953.
  • Sommers, L. E., and D. W. Nelson. 1972. Determination of total phosphorus in soils: A rapid perchloric acid digestion procedure. Soil Science Society of America Journal 36 (6):902–04. doi:10.2136/sssaj1972.03615995003600060020x.
  • Szymczycha-Madeja, A., M. Welna, M. Zabłocka-Malicka, P. Pohl, and W. Szczepaniak. 2021. Development and validation of an analytical method for determination of al, ca, cd, fe, mg and P in calcium-rich materials by ICP OES. Molecules 26 (20):6269. doi:10.3390/molecules26206269.
  • Turek, A., K. Wieczorek, and W. M. Wolf. 2019. Digestion procedure and determination of heavy metals in sewage sludge—an analytical problem. Sustainability 11 (6):1753. doi:10.3390/su11061753.
  • Vercoutere, K., U. Fortunati, H. Muntau, B. Griepink, and E. A. Maier. 1995. The certified reference materials CRM 142 R light sandy soil, CRM 143 R sewage sludge amended soil and CRM 145 R sewage sludge for quality control in monitoring environmental and soil pollution. Fresenius’ Journal of Analytical Chemistry 352 (1):197–202. doi:10.1007/BF00322326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.