285
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficient Quantification of Soluble and Insoluble Oxalates in Clay Mineral Mixtures

, , , , , & show all
Pages 1985-1999 | Received 14 Dec 2022, Accepted 26 Mar 2024, Published online: 02 Apr 2024

References

  • Aleixandre-Tudo, J. L., H. Nieuwoudt, and W. du Toit. 2019. Towards on-line monitoring of phenolic content in red wine grapes: A feasibility study. Food Chemistry 270:322–31. doi:10.1016/j.foodchem.2018.07.118.
  • Aleixandre-Tudo, J. L., H. Nieuwoudt, A. Olivieri, J. L. Aleixandre, and W. du Toit. 2018. Phenolic profiling of grapes, fermenting samples and wines using UV-Visible spectroscopy with chemometrics. Food Control 85:11–22. doi:10.1016/j.foodcont.2017.09.014.
  • Alexander, D. L. J., A. Tropsha, and D. A. Winkler. 2015. Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. Journal of Chemical Information and Modeling 55 (7):1316–22. doi:10.1021/acs.jcim.5b00206.
  • Arnott, H. J., and M. A. Webb. 2013. Twinned raphides of calcium oxalate in grape (vitis): Implications for crystal stability and function. International Journal of Plant Sciences 161 (1):133–42. doi:10.1086/314230.
  • Bailey, S. W., D. C. Buso, and G. E. Likens. 2003. Implications of sodium mass balance for interpreting the calcium cycle of a forested ecosystem. Ecology 84 (2):471–84. doi:10.1890/0012-9658(2003)084[0471:IOSMBF]2.0.CO;2.
  • Bellon-Maurel, V., E. Fernandez-Ahumada, B. Palagos, J. M. Roger, and A. McBratney. 2010. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry 29 (9):1073–81. doi:10.1016/j.trac.2010.05.006.
  • Bhatt, P. A., and P. Paul. 2008. Analysis of urinary stone constituents using powder X-ray diffraction and FT-IR. Journal of Chemical Sciences 120 (2):267–73. doi:10.1007/s12039-008-0032-1.
  • Braissant, O., G. Cailleau, M. Aragno, and E. P. Verrecchia. 2004. Biologically induced mineralization in the tree milicia excelsa (Moraceae): Its causes and consequences to the environment. Geobiology 2 (1):59–66. doi:10.1111/j.1472-4677.2004.00019.x.
  • Braissant, O., E. P. Verrecchia, and M. Aragno. 2002. Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften 89 (8):366–70. doi:10.1007/s00114-002-0340-0.
  • Bushong, J. T., R. J. Norman, and N. A. Slaton. 2015. Near-infrared reflectance spectroscopy as a method for determining organic carbon concentrations in soil. Communications in Soil Science & Plant Analysis 46 (14):1791–801. doi:10.1080/00103624.2015.1048250.
  • Cailleau, G., O. Braissant, and E. P. Verrecchia. 2011a. Turning sunlight into stone: The oxalate-carbonate pathway in a tropical tree ecosystem. Biogeosciences 8 (7):1755–67. doi:10.5194/bg-8-1755-2011.
  • Cailleau, G., O. Braissant, and E. P. Verrecchia. 2011b. Turning sunlight into stone: The oxalate-carbonate pathway in a tropical tree ecosystem. Biogeosciences 8 (7):1755–67. doi:10.5194/bg-8-1755-2011.
  • Cailleau, G., M. Mota, S. Bindschedler, P. Junier, and E. P. Verrecchia. 2014. Detection of active oxalate-carbonate pathway ecosystems in the Amazon Basin: Global implications of a natural potential C sink. Catena 116:132–41. doi:10.1016/j.catena.2013.12.017.
  • Carmona, P., J. Bellanato, and E. Escolar. 1997. Infrared and Raman spectroscopy of urinary calculi: A review. Biospectroscopy 3 (5):331–46. doi:10.1002/(SICI)1520-6343(1997)3:5<331:AID-BSPY2>3.0.CO;2-5.
  • Certini, G., G. Corti, and F. C. Ugolini. 2000. Vertical trends of oxalate concentration in two soils under abies alba from Tuscany (Italy). Journal of Plant Nutrition and Soil Science 163 (2):173–77. doi:10.1002/(SICI)1522-2624(200004)163:2<173:AID-JPLN173>3.0.CO;2-H.
  • Cheng, Z. Y., D. C. Fernández-Remolar, M. R. M. Izawa, D. M. Applin, M. Chong Díaz, M. Fernandez-Sampedro, M. García-Villadangos, T. Huang, L. Xiao, V. Parro, et al. 2016. Oxalate formation under the hyperarid conditions of the atacama desert as a mineral marker to provide clues to the source of organic carbon on mars. Journal of Geophysical Research: Biogeosciences 121(6):1593–604. doi:10.1002/2016JG003439.
  • Chen, J., S. Sun, and Q. Zhou. 2013. Direct observation of bulk and surface chemical morphologies of ginkgo biloba leaves by Fourier transform mid- and near-infrared microspectroscopic imaging. Analytical and Bioanalytical Chemistry 405 (29):9385–400. doi:10.1007/s00216-013-7366-3.
  • Chiu, Y.-C., H.-Y. Yang, S.-H. Lu, and H. K. Chiang. 2010. Micro-Raman spectroscopy identification of urinary stone composition from ureteroscopic lithotripsy urine powder. Journal of Raman Spectroscopy 41 (2):136–41. doi:10.1002/jrs.2418.
  • Clarke, C. E., M. Vermooten, A. Watson, M. Hattingh, J. A. Miller, and M. L. Francis. 2022. Downward migration of salts in termite-affected soils: Implications for groundwater salinization. Geoderma 413:115747. doi:10.1016/j.geoderma.2022.115747.
  • Dabbas, M. A., M. Y. Eisa, and W. H. Kadhim 2013. Estimation of gypsum- calcite percentages using a Fourier transform infrared spectrophotometer (FTIR), in Alexandria Gypsiferous Soil -Iraq. In 2nd international conference on IRAQI oil studies, 2013, University of Baghdad, Baghdad.
  • Dauer, J. M., and S. S. Perakis. 2013. Contribution of calcium oxalate to soil-exchangeable calcium. Soil Science 178 (12):671–78. doi:10.1097/SS.0000000000000029.
  • Dauer, J. M., and S. S. Perakis. 2014. Calcium oxalate contribution to calcium cycling in forests of contrasting nutrient status. Forest Ecology and Management 334:64–73. doi:10.1016/j.foreco.2014.08.029.
  • Dutton, M. V., and C. S. Evans. 1996. Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology 42 (9):881–95. doi:10.1139/m96-114.
  • Echigo, T., M. Kimata, A. Kyono, M. Shimizu, and T. Hatta. 2005. Re-investigation of the crystal structure of whewellite [Ca(c 2 O 4)·H 2 O] and the dehydration mechanism of caoxite [Ca(c 2 O 4)·3H 2 O]. Mineralogical Magazine 69 (1):77–88. doi:10.1180/0026461056910235.
  • Elgstoen, K. B. P., B. Woldseth, K. Hoie, and L. Morkrid. 2010. Liquid chromatography-tandem mass spectrometry determination of oxalate in spot urine. Scandinavian Journal of Clinical and Laboratory Investigation 70 (3):145–50. doi:10.3109/00365510903578765.
  • Franceschi, V. R., and H. T. Horner. 1980a. Calcium oxalate crystals in plants. The Botanical Review 46 (4):361–427. doi:10.1007/BF02860532.
  • Franceschi, V. R., and H. T. Horner. 1980b. Calcium oxalate crystals in plants. The Botanical Review 46 (4):361–427. doi:10.1007/BF02860532.
  • Francis, M. L. 2008. Soil Formation on the Namaqualand Coastal Plain. Stellenbosch: PhD thesis, Stellenbosch University. [Online]. https://everythingcomputerscience.com/books/regmods.pdf/.
  • Francis, M. L., F. Ellis, J. J. N. Lambrechts, and R. M. Poch. 2013. A micromorphological view through a Namaqualand termitaria (Heuweltjie, a Mima-like mound). Catena 100 (February 2017):57–73. doi:10.1016/j.catena.2012.08.004.
  • Francis, M. L., M. V. Fey, F. Ellis, and M. Poch. 2015. Horizontes petrodúricos e “petrosepiolíticos” em solos de Namaqualand, África do Sul. Spanish Journal of Soil Science 2 (1):8–25. doi:10.3232/SJSS.2012.V2.N1.01.
  • Francis, M. L., T. O. Majodina, and C. E. Clarke. 2020. A geographic expression of the sepiolite-palygorskite continuum in soils of northwest South Africa. Geoderma 379:114615. doi:10.1016/j.geoderma.2020.114615.
  • Francis, M. L., and R. M. Poch. 2019. Calcite accumulation in a South African heuweltjie: Role of the termite microhodotermes Viator and oribatid mites. Journal of Arid Environments 170:170. doi:10.1016/j.jaridenv.2019.05.009.
  • Gobrecht, A., J. M. Roger, and V. Bellon-Maurel. 2014. Major issues of diffuse reflectance NIR spectroscopy in the specific context of soil carbon content estimation. A Review Advances in Agronomy 123:145–75.
  • Gomez, K. A., and A. A. Gomez. 1984. Statistical Procedures for Agricultural Research. 2nd ed. New York: John Wiley & Sons, Inc.
  • Graustein, W. C., C. Kermit Jr, and P. Sollins. 2011. Calcium oxalate: Occurrence in soils and effect on nutrient and geochemical cycles. Advancement of Science 198 (4323):1252–54. doi:10.1126/science.198.4323.1252.
  • Hervé, V., A. Simon, F. Randevoson, G. Cailleau, G. Rajoelison, H. Razakamanarivo, S. Bindschedler, E. Verrecchia, and P. Junier. 2021. Functional diversity of the litter-associated fungi from an oxalate–carbonate pathway ecosystem in Madagascar. Microorganisms [Internet] 9 (5):1–12. doi:10.3390/microorganisms9050985.
  • Hofmann, B. A., and S. M. Bernasconi. 1998. Review of occurrences and carbon isotope geochemistry of oxalate minerals: Implications for the origin and fate of oxalate in diagenetic and hydrothermal fluids. Chemical Geology 149 (1–2):127–46. doi:10.1016/S0009-2541(98)00043-6.
  • Ilarslan, H., R. G. Palmer, J. Imsande, and H. T. Horner. 1997. Quantitative determination of calcium oxalate and oxalate in developing seeds of soybean (Leguminosae). American Journal of Botany 84 (8):1042–46. doi:10.2307/2446147.
  • Independent JPEG Group. 2018. [Online]. Accessed August 8, 2023. https://everythingcomputerscience.com/books/regmods.pdf//.
  • Jilling, A., M. Keiluweit, J. L. M. Gutknecht, and A. S. Grandy. 2021. Priming mechanisms providing plants and microbes access to mineral-associated organic matter. Soil Biology and Biochemistry 158:108265. doi:10.1016/j.soilbio.2021.108265.
  • Johnson, J. M., E. Vandamme, K. Senthilkumar, A. Sila, K. D. Shepherd, and K. Saito. 2019. Near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for assessing soil fertility in rice fields in sub-saharan Africa. Geoderma 354:354. doi:10.1016/j.geoderma.2019.06.043.
  • Johnston, C. G., and J. R. Vestal. 1993. Biogeochemistry of oxalate in the Antarctic cryptoendolithic lichen-dominated community. Microbial Ecology 25 (3):305–19. doi:10.1007/BF00171895.
  • Jozanikohan, G., and M. N. Abarghooei. 2022. The Fourier transform infrared spectroscopy (FTIR) analysis for the clay mineralogy studies in a clastic reservoir. Journal of Petroleum Exploration and Production Technology 12 (8):2093–106. doi:10.1007/s13202-021-01449-y.
  • Junaedi, E., K. Lestari, and M. Muchtaridi. 2021b. Infrared spectroscopy technique for quantification of compounds in plant-based medicine and supplement. Journal of Advanced Pharmaceutical Technology and Research 12 (1):1–7. doi:10.4103/japtr.JAPTR_96_20.
  • Kachkoul, R., T. S. Houssaini, M. Mohim, R. El Habbani, and A. Lahrichi. 2020. Chemical compounds identification and antioxidant and calcium oxalate anticrystallization activities of punica granatum L. Evidence-Based Complementary and Alternative Medicine 2020:1–14. doi:10.1155/2020/9424510.
  • Keevil, B. G., and S. Thornton. 2006. Quantification of urinary oxalate by liquid chromatography-tandem mass spectrometry with online weak anion exchange chromatography. Clinical Chemistry 52 (12):2294–96. doi:10.1373/clinchem.2006.075275.
  • Khalil, S. K. H., and M. A. Azooz. 2007. Application of vibrational spectroscopy in identification of the composition of the urinary stones. Journal of Applied Sciences Research 3 (5):387–91.
  • Kotani, A., H. Ishikawa, T. Shii, M. Kuroda, Y. Mimaki, K. Machida, K. Yamamoto, and H. Hakamata. 2023. Determination of oxalic acid in herbal medicines by semi-micro hydrophilic interaction liquid chromatography coupled with electrochemical detection. Analytical Sciences 39 (4):441–46. doi:10.1007/s44211-022-00245-w.
  • Kotu, V., and B. Deshpande. 2019. Anomaly detection. In Data Science, eds. M. Kaufmann, 2nd, 447–65. Elsevier. doi:10.1016/B978-0-12-814761-0.00013-7.
  • Krieger, C., C. Calvaruso, C. Morlot, S. Uroz, L. Salsi, and M. P. Turpault. 2017. Identification, distribution, and quantification of biominerals in a deciduous forest. Geobiology 15 (2):296–310. doi:10.1111/gbi.12223.
  • Kuhn, M., and D. Vaughan & RStudio Team. 2020.
  • La Russa, M. F., S. A. Ruffolo, G. Barone, G. M. Crisci, P. Mazzoleni, and A. Pezzino. 2009. The use of FTIR and micro-FTIR spectroscopy: An example of application to cultural heritage. International Journal of Spectroscopy 2009:1–5. doi:10.1155/2009/893528.
  • Lin, M. H., Y. L. Song, P. A. Lo, C. Y. Hsu, A. T. L. Lin, E. Y. H. Huang, and H. K. Chiang. 2019. Quantitative analysis of calcium oxalate hydrate urinary stones using FTIR and 950/912 cm−1 peak ratio. Vibrational Spectroscopy 102:85–90. doi:10.1016/j.vibspec.2019.03.006.
  • Lin, Z. D., Y. B. Wang, R. J. Wang, L. S. Wang, C. P. Lu, Z. Y. Zhang, L. T. Song, and Y. Liu. 2017. Improvements of the vis-NIRS model in the prediction of soil organic matter content using spectral pretreatments, sample selection, and wavelength optimization. Journal of Applied Spectroscopy 84 (3):529–34. doi:10.1007/s10812-017-0505-4.
  • Liu, H., X. Y. Sun, F. X. Wang, and J. M. Ouyang. 2020. Regulation on calcium oxalate crystallization and protection on HK-2 cells of tea polysaccharides with different molecular weights. Oxidative Medicine and Cellular Longevity 2020:1–14. doi:10.1155/2020/5057123.
  • Liu, Y., C. Zhang, B. Li, H. Li, and H. Zhan. 2015. Extraction and determination of total and soluble oxalate in pulping and papermaking raw materials. BioRes 10 (3):4580–87. doi:10.15376/biores.10.3.4580-4587.
  • Martin, G., M. Guggiari, D. Bravo, J. Zopfi, G. Cailleau, M. Aragno, D. Job, E. Verrecchia, and P. Junier. 2012. Fungi, bacteria and soil pH the oxalate–carbonate pathway as a model for metabolic interaction. Environmental Microbiology 14 (11):2960–70. doi:10.1111/j.1462-2920.2012.02862.x.
  • Misiewicz, B., D. Mencer, W. Terzaghi, and A. L. VanWert. 2023. Analytical methods for oxalate quantification: The ubiquitous organic anion. Molecules 28 (7):3206. doi:10.3390/molecules28073206.
  • Modenesi, P., M. Piana, P. Giordani, A. Tafanelli, and A. Bartoli. 2000. Calcium oxalate and medullary architecture in Xanthomaculina convoluta. Lichenologist (London, England) 32 (5):505–12. doi:10.1006/lich.2000.0276.
  • Modlin, M., and P. J. Davies. 1981. The composition of renal stones analysed by infrared spectroscopy. South African Medical Journal 59 (10):337–41.
  • Mohamed, E. S., A. M. Saleh, A. B. Belal, and A. A. Gad. 2018. Application of near-infrared reflectance for quantitative assessment of soil properties. The Egyptian Journal of Remote Sensing and Space Sciences 21 (1):1–14. doi:10.1016/j.ejrs.2017.02.001.
  • Möller, K., M. Gergeleit, and P. Schüller. 1989. Analysis of urinary stones by computerized infrared Spectroscopy1. Clinical Chemistry and Laboratory Medicine 27 (9):639–42. doi:10.1515/cclm.1989.27.9.639.
  • Mujinya, B. B., F. Mees, P. Boeckx, S. Bodé, G. Baert, H. Erens, S. Delefortrie, A. Verdoodt, M. Ngongo, and E. Van Ranst. 2011. The origin of carbonates in termite mounds of the Lubumbashi area. DR Congo Geodermal 165(1):95–105. doi:10.1016/j.geoderma.2011.07.009.
  • Naes, T., T. Isaksson, T. Fearn, and T. Davies. 2002. A user-friendly guide to multivariate calibration and classification. Chichester: NIR Publications.
  • Nakata, P. A. 2003. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Science 164 (6):901–09. doi:10.1016/S0168-9452(03)00120-1.
  • Nel, T., C. E. Clarke, and A. G. Hardie. 2023. Comparison of soil pH and exchangeable cation quantification by various wet methods with near- and mid-infrared spectroscopy prediction. Communications in Soil Science and Plant Analysis 54 (17):2425–38. doi:10.1080/00103624.2023.2223657.
  • Oka, T., T. Koide, and T. Sonoda. 1985. Estimation by infrared spectrophotometer of the calcium oxalate dihydrate to calcium oxalate monohydrate ratio. Journal of Urology 134 (4):813–17. doi:10.1016/S0022-5347(17)47445-3.
  • Oyebiyi, O. O., J. O. Ojetade, S. A. Muda, and A. A. Amusan. 2018. Comparative study of three methods of determining cation exchange capacity of three major soils in the rainforest region of Southwestern Nigeria. Communications in Soil Science and Plant Analysis 49 (18):2338–44. doi:10.1080/00103624.2018.1499768.
  • Pantigoso, H. A., Y. He, M. J. DiLegge, and J. M. Vivanco. 2021. Methods for root exudate collection and analysis. eds. L. Carvalhais & P. Dennis. 291–303. New York: Humana Press Methods in Molecular Biology.
  • Parekh, B. B., P. M. Vyas, S. R. Vasant, and M. J. Joshi. 2008. Thermal, FT-IR and dielectric studies of gel grown sodium oxalate single crystals. Bulletin of Materials Science 31 (2):143–47. doi:10.1007/s12034-008-0025-1.
  • Pasquini, C. 2018. Near infrared spectroscopy: A mature analytical technique with new perspectives – a review. Analytica chimica acta 1026:8–36. doi:10.1016/j.aca.2018.04.004.
  • Pavia, D. L., G. M. Lampman, G. S. Kriz, and J. R. Vyvyan. 2015. Infrared Spectroscopy. 5th ed. Bellingham, Washington: Cengage Learning Introduction to Spectroscopy.
  • Petrova, D., K. Petkova, I. Saltirov, and T. S. Kolev. 2019. Application of vibrational spectroscopy and XRD analysis for investigation of calcium oxalate kidney stones. Bulgarian Chemical Communications 51 (1):88–95.
  • Pons, S., S. Bindschedler, D. Sebag, P. Junier, E. Verrecchia, and G. Cailleau. 2018. Biocontrolled soil nutrient distribution under the influence of an oxalogenic-oxalotrophic ecosystem. Plant and Soil 425 (1–2):145–60. doi:10.1007/s11104-018-3573-1.
  • Pylro, V. S., A. L. M. de Freitas, W. C. Otoni, I. R. da Silva, A. C. Borges, M. D. Costa, and A. Guerrero-Hernandez. 2013. Calcium oxalate crystals in eucalypt ectomycorrhizae: Morphochemical characterization. Public Library of Science ONE 8 (7):e67685. doi:10.1371/journal.pone.0067685.
  • Ramirez-Lopez, L., and A. Stevens 2020. kenStone: Kennard-Stone algorithm for calibration sampling. [Online] Accessed September 28, 2020. https://everythingcomputerscience.com/books/regmods./pdf/.
  • Rehman, H. U., R. M. Poch, F. Scarciglia, and M. L. Francis. 2021. A carbon-sink in a sacred forest: Biologically-driven calcite formation in highly weathered soils in Northern Togo (West Africa). Catena 198 (November 2020):105027. doi:10.1016/j.catena.2020.105027.
  • Rojas-Molina, I., E. Gutiérrez-Cortez, M. Bah, A. Rojas-Molina, C. Ibarra-Alvarado, E. Rivera-Muñoz, A. Del Real, and M. D. L. A. Aguilera-Barreiro. 2015. Characterization of calcium compounds in opuntia ficus indica as a source of calcium for human diet. Journal of Chemistry 2015:1–8. doi:10.1155/2015/710328.
  • Ross, A. B., G. P. Savage, R. J. Martin, and L. Vanhanen. 1999. Oxalates in oca (New Zealand yam) (oxalis tuberosa mol.). Journal of Agricultural and Food Chemistry 47 (12):5019–22. doi:10.1021/jf990332r.
  • Rowley, M. C., H. Estrada-Medina, M. Tzec-Gamboa, A. Rozin, G. Cailleau, E. P. Verrecchia, and I. Green. 2017. Moving carbon between spheres, the potential oxalate-carbonate pathway of brosimum alicastrum Sw.; moraceae. Plant and Soil 412 (1–2):465–79. doi:10.1007/s11104-016-3135-3.
  • RStudio Team. 2019. [Online]. https://everythingcomputerscience.com/books/regmods//.pdf.
  • Saikia, B. J., and G. Parthasarathy. 2010. Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. Journal of Modern Physics 1 (04):206–10. doi:10.4236/jmp.2010.14031.
  • Schmitt, A. D., N. Borrelli, D. Ertlen, S. Gangloff, F. Chabaux, and M. Osterrieth. 2018. Stable calcium isotope speciation and calcium oxalate production within beech tree (Fagus sylvatica L.) organs. Biogeochemistry 137 (1–2):197–217. doi:10.1007/s10533-017-0411-0.
  • Shen, Y., X. Luo, H. Li, Q. Guan, and L. Cheng. 2021. Evaluation of a high-performance liquid chromatography method for urinary oxalate determination and investigation regarding the pediatric reference interval of spot urinary oxalate to creatinine ratio for screening of primary hyperoxaluria. Journal of Clinical Laboratory Analysis 35 (8):1–9. doi:10.1002/jcla.23870.
  • Sikka, S., C. Selwitz, E. Doehne, G. Chiari, and H. Khanjian 2008. Presentation for the paper: Qualitative and quantitative methods of detection and mapping of “calcium oxalate deposits” on treated limestones and marbles. Presentation at: Stone consolidation in cultural heritage : research and practice : proceedings of the international symposium. Lisbon 6-7 May, 2008. ( December 2017):445–54.
  • Tooulakou, G., A. Giannopoulos, D. Nikolopoulos, P. Bresta, E. Dotsika, M. G. Orkoula, C. G. Kontoyannis, C. Fasseas, G. Liakopoulos, M. I. Klapa, et al. 2016. Alarm photosynthesis: Calcium oxalate crystals as an internal CO2 source in plants. Plant Physiology 171(4):2577–85. doi:10.1104/pp.16.00111.
  • Tran, T. N., T. V. A. Pham, M. L. P. Le, T. P. T. Nguyen, and V. M. Tran. 2013. Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Advances in Natural Sciences: Nanoscience and Nanotechnology 4 (4):045007. doi:10.1088/2043-6262/4/4/045007.
  • Uren, N. C. 2018. Calcium oxalate in soils, its origins and fate – a review. Soil Research 56 (5):443–50. doi:10.1071/SR17244.
  • van Wyngaard, E., E. Blancquaert, H. Nieuwoudt, and A.-T. Jose Luis. 2021. Infrared spectroscopy and chemometric applications for the qualitative and quantitative investigation of grapevine organs. Frontiers in Plant Science 12. doi:10.3389/fpls.2021.723247.
  • Varão Moura, A., A. Aparecido Rosini Silva, J. Domingos Santo da Silva, L. Aleixo Leal Pedroza, J. Bornhorst, M. Stiboller, T. Schwerdtle, and P. Gubert. 2022. Determination of ions in Caenorhabditis elegans by ion chromatography. Journal of Chromatography B 1204:123312. doi:10.1016/j.jchromb.2022.123312.
  • Vasant Naik Bharati Vidyapeeth, V., M. K. Bayabai Shripatrao Kadam Kanya Mahavidyalaya, V. T. Aparadh Shri Pancham Khemaraj Mahavidyalaya, and B. A. Karadge. 2014. Methodology in determination of oxalic acid in plant tissue: A comparative approach. Journal of Global Trends in Pharmaceutical Sciences Journal 5 (2):1662–72. [Online]. https://everythingcomputerscience.com/books/regmods./pdf.
  • Vermonti, N. 2022. Structural and functional attributes of heuweltjies in the fynbos and succulent karoo biomes: The interaction of termites, vegetation and geochemistry. Stellenbosch: Stellenbosch University.
  • Verrecchia, E. P., O. Braissant, and G. Cailleau. 2006. The oxalate-carbonate pathway in soil carbon storage: The role of fungi and oxalotrophic bacteria. Fungi in Biogeochemical Cycles 9780521845 (January):289–310.
  • Viscarra Rossel, R. A., D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad. 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131 (1–2):59–75. doi:10.1016/j.geoderma.2005.03.007.
  • Vives-Peris, V., C. de Ollas, A. Gómez-Cadenas, and R. Pérez-Clemente. 2020. Root exudates: From plant to rhizosphere and beyond. Plant cell reports 39 (1):3–17. doi:10.1007/s00299-019-02447-5.
  • Volmer, M., A. Bolck, B. G. Wolthers, A. J. de Ruiter, D. A. Doornbos, and W. van der Slik. 1993. Partial least-squares regression for routine analysis of urinary calculus composition with Fourier transform infrared analysis. Clinical Chemistry 39 (6):948–54. doi:10.1093/clinchem/39.6.948.
  • Volmer, M., J. C. M. De Vries, and H. M. J. Goldschmidt. 2001. Infrared analysis of urinary calculi by a single reflection accessory and a neural network interpretation algorithm. Clinical Chemistry 47 (7):1287–96. doi:10.1093/clinchem/47.7.1287.