92
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Plant Growth Promoting Rhizobacteria: An Option for Reducing Abiotic Stress in Plant

&
Pages 2267-2284 | Received 20 Jul 2023, Accepted 07 May 2024, Published online: 13 May 2024

References

  • Abid, L., M. Smiri, E. Federici, B. Lievens, M. Manai, Y. Yan, and N. Sadfi-Zouaoui. 2022. Diversity of rhizospheric and endophytic bacteria isolated from dried fruit of Ficus carica. Saudi Journal of Biological Sciences 29 (9):103398. doi:10.1016/j.sjbs.2022.103398.
  • Abulfaraj, A. A., and R. S. Jalal. 2021. Use of plant growth-promoting bacteria to enhance salinity stress in soybean (Glycine max L.) plants. Saudi Journal of Biological Sciences 28 (7):3823–34. doi:10.1016/j.sjbs.2021.03.053.
  • Aeron, A., E. Khare, C. K. Jha, V. S. Meena, S. M. A. Aziz, M. T. Islam, and K. Kim. 2020. Revisiting the plant growth-promoting rhizobacteria: Lessons from the past and objectives for the future. Archives of Microbiology 202(4):665–76. doi:10.1007/s00203-019-01779-w.
  • Agurla, S., S. Gahir, S. Munemasa, Y. Murata, and A. S. Raghavendra. 2018. Mechanism of stomatal closure in plants exposed to drought and cold stress. Advances in Experimental Medicine and Biology 1081:215–32. doi:10.1007/978-981-13-1244-1_12.
  • Ahemad, M., and M. Kibret. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science 26 (1):1–20. doi:10.1016/j.jksus.2013.05.001.
  • Ahmad, H. M., S. Fiaz, S. Hafeez, S. Zahra, A. N. Shah, B. Gul, and O. Aziz. 2022. Plant growth-promoting rhizobacteria eliminate the effect of drought stress in plants: A review. Frontiers in Plant Science 13. doi:10.3389/fpls.2022.875774.
  • Alharbi, K., H. S. Osman, E. Rashwan, E. M. Hafez, and A. E.-D. Omara. 2022. Stimulating the growth, anabolism, antioxidants, and yield of rice plants grown under salt stress by combined application of bacterial inoculants and nano-silicon. Plants 11 (24):3431. doi:10.3390/plants11243431.
  • Ali, Q., M. Ayaz, G. Mu, A. Hussain, Q. Yuanyuan, C. Yu, Y. Xu, H. Manghwar, Q. Gu, H. Wu, et al. 2022. Revealing plant growth-promoting mechanisms of Bacillus strains in elevating rice growth and its interaction with salt stress. Frontiers in Plant Science 13. doi:10.3389/fpls.2022.994902.
  • Ali, S., and N. Khan. 2021. Delineation of mechanistic approaches employed by plant growth promoting microorganisms for improving drought stress tolerance in plants. Microbiological Research 249:126771. doi:10.1016/j.micres.2021.126771.
  • Ali, S. Z., V. Sandhya, M. Grover, N. Kishore, L. V. Rao, and B. Venkateswarlu. 2009. Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biology and Fertility of Soils 46 (1):45–55. doi:10.1007/s00374-009-0404-9.
  • Ali, S. Z., V. Sandhya, M. Grover, V. R. Linga, and V. Bandi. 2011. Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. Journal of Plant Interactions 6 (4):239–46. doi:10.1080/17429145.2010.545147.
  • Ali, N., M. K. Swarnkar, R. Veer, P. Kaushal, and A. M. Pati. 2023. Temperature-induced modulation of stress-tolerant PGP genes bioprospected from Bacillus sp. IHBT-705 associated with saffron (crocus sativus) rhizosphere: A natural -treasure trove of microbial biostimulants. Frontiers in Plant Science 14:1141538. doi:10.3389/fpls.2023.1141538.
  • Ali, S., and L. Xie. 2020. Plant growth promoting and stress mitigating abilities of soil born microorganisms. Recent Patents on Food, Nutrition & Agriculture 11 (2):96–104. doi:10.2174/2212798410666190515115548.
  • Aloo, B. N., B. A. Makumba, and E. R. Mbega. 2019. The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research 219:26–39. doi:10.1016/j.micres.2018.10.011.
  • Amna, Y. X., M. A. Farooq, M. T. Javed, M. A. Kamran, T. Mukhtar, and J. Ali. 2020. Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. Plant Physiology and Biochemistry 151:640–49. doi:10.1016/j.plaphy.2020.04.016.
  • Arora, N. K., E. Khare, and D. K. Maheshwari. 2010. Plant growth promoting Rhizobacteria: Constraints in bioformulation, commercialization, and future strategies. In Plant growth and health promoting bacteria, ed. D. Maheshwari, Vol. 18. Berlin, Heidelberg, Germany: Springer. doi:10.1007/978-3-642-13612-2_5.
  • Ashraf, A., A. Bano, and S. A. Ali. 2019. Characterisation of plant growth‐promoting rhizobacteria from rhizosphere soil of heat‐stressed and unstressed wheat and their use as bio‐inoculant. Ed. H. Papen. Plant Biology 21 (4):762–69. doi:10.1111/plb.12972.
  • Avin-Wittenberg, T. 2019. Autophagy and its role in plant abiotic stress management. Plant, Cell & Environment 42 (3):1045–53. doi:10.1111/pce.13404.
  • Awan, S. A., N. Ilyas, I. Khan, M. A. Raza, A. U. Rehman, M. Rizwan, A. Rastogi, R. Tariq, and M. Brestic. 2020. Bacillus siamensis reduces cadmium accumulation and improves growth and antioxidant defense system in two wheat (Triticum aestivum L.) varieties. Plants 9 (7):878. doi:10.3390/plants9070878.
  • Bakhshandeh, E., M. Gholamhosseini, Y. Yaghoubian, and H. Pirdashti. 2020. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regulation 90 (1):123–36. doi:10.1007/s10725-019-00556-5.
  • Barquero, M., J. Poveda, A. M. Laureano-Marín, N. Ortiz-Liébana, J. BrañBrañAs, and F. González-Andrés. 2022. Mechanisms involved in drought stress tolerance triggered by rhizobia strains in wheat. Frontiers in Plant Science 13. doi: 10.3389/fpls.2022.1036973.
  • Bashan, Y., L. E. de-Bashan, S. R. Prabhu, and J. P. Hernandez. 2014. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant and Soil 378 (1–2):1–33. doi:10.1007/s11104-013-1956-x.
  • Bhattacharyya, P. N., and D. K. Jha. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology 28 (4):1327–50. doi:10.1007/s11274-011-0979-9.
  • Bhat, B. A., L. Tariq, S. Nissar, S. T. Islam, S. U. Islam, Z. Mangral, and N. Ilyas. 2022. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. Journal of Applied Microbiology 133 (5):2717–41. doi:10.1111/jam.15796.
  • Bouremani, N., H. Cherif-Silini, A. Silini, A. C. Bouket, L. Luptakova, F. N. Alenezi, O. Baranov, and L. Belbahri. 2023. Plant growth-promoting rhizobacteria (PGPR): A rampart against the adverse effects of drought stress. Water 15 (3):418. doi:10.3390/w15030418.
  • Bulgari, R., G. Franzoni, and A. Ferrante. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9 (6):306. doi:10.3390/agronomy9060306.
  • Casanovas, E. M., C. A. Barassi, and R. J. Sueldo. 2002. Azospiriflum inoculation mitigates water stress effects in maize seedlings. Cereal Research Communications 30 (3):343–50. doi:10.1007/BF03543428.
  • Chaudhry, V., A. Bhatia, S. K. Bharti, S. K. Mishra, P. S. Chauhan, A. Mishra, O. P. Sidhu, and C. S. Nautiyal. 2015. Metabolite profiling reveals abiotic stress tolerance in tn5 mutant of Pseudomonas Putida. Public Library of Science ONE 10 (1):e0113487. doi:10.1371/journal.pone.0113487.
  • Chen, Y., Y. Liu, L. Zhang, L. Zhang, N. Wu, and H. Liu. 2022. Effect of salt stress and nitrogen supply on seed germination and early seedling growth of three coastal halophytes. PeerJ 10:e14164. doi:10.7717/peerj.14164.
  • Chen, B., S. Luo, Y. Wu, J. Ye, Q. Wang, X. Xu, F. Pan, K. Y. Khan, Y. Feng, and X. Yang. 2017. The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of sedum alfredii Hance. Frontiers in Microbiology 8:2538. doi:10.3389/fmicb.2017.02538.
  • Cho, S. T., H. H. Chang, D. Egamberdieva, F. Kamilova, B. Lugtenberg, C. H. Kuo, and C.-H. Yang. 2015. Genome analysis of Pseudomonas fluorescens PCL1751: A Rhizobacterium that controls root diseases and alleviates salt stress for its plant host. Public Library of Science ONE 10 (10):e0140231. doi:10.1371/journal.pone.0140231.
  • Czarnes, S., P. Mercier, D. G. Lemoine, J. Hamzaoui, and L. Legendre. 2020. Impact of soil water content on maize responses to the plant growth‐promoting rhizobacterium Azospirillum lipoferum CRT1. Journal of Agronomy and Crop Science 206 (5):505–16. doi:10.1111/jac.12399.
  • Danish, S., and M. Zafar-Ul-Hye. 2019. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Scientific Reports 9 (1). doi: 10.1038/s41598-019-42374-9.
  • Diby, P., S. Bharathkumar, and N. Sudha. 2005. Osmotolerance in biocontrol strain of Pseudomonas pseudoalcaligenes MSP-538: A study using osmolyte, protein and gene expression profiling. Annals of Microbiology 55:243–47.
  • Du, H., X. Shen, Y. Huang, M. Huang, and Z. Zhang. 2016. Overexpression of Vitreoscilla hemoglobin increases waterlogging tolerance in Arabidopsis and maize. BMC Plant Biology 16 (35). doi: 10.1186/s12870-016-0728-1.
  • El-Sayed, S. Y. S., and R. H. Hagab. 2020. Effect of organic acids and plant growth promoting rhizobacteria (PGPR) on biochemical content and productivity of wheat under saline soil conditions. Middle East Journal of Agriculture Research 9 (2):227–42. doi:10.36632/mejar/2020.9.2.20.
  • Enebe, M. C., and O. O. Babalola. 2018. The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: A survival strategy. Applied Microbiology and Biotechnology 102 (18):7821–35. doi:10.1007/s00253-018-9214-z.
  • Ercole, T. G., D. C. Savi, D. Adamoski, V. M. Kava, M. Hungria, and L. V. Galli-Terasawa. 2021. Diversity of maize (Zea mays L.) rhizobacteria with potential to promote plant growth. Brazilian Journal of Microbiology 52 (4):1807–23. doi:10.1007/s42770-021-00596-y.
  • Esringü, A., D. Kaynar, M. Turan, and S. Ercisli. 2016. Ameliorative effect of humic acid and plant growth-promoting rhizobacteria (PGPR) on Hungarian vetch plants under salinity stress. Communications in Soil Science and Plant Analysis 47 (5):602–18. doi:10.1080/00103624.2016.1141922.
  • Fadiji, A. E., M. Del C Orozco-Mosqueda, S. de Los Santos-Villalobos, G. Santoyo, and O. O. Babalola. 2022. Recent developments in the application of plant growth-promoting drought adaptive rhizobacteria for drought mitigation. Plants 11 (22):3090. doi:10.3390/plants11223090.
  • Fahad, S., A. A. Bajwa, U. Nazir, S. A. Anjum, A. Farooq, A. Zohaib, S. Sadia, W. Nasim, S. Adkins, S. Saud, et al. 2017. Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science 8:1147. doi:10.3389/fpls.2017.01147.
  • Figueiredo, M. V. B., H. A. Burity, C. R. Martínez, and C. P. Chanway. 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Applied Soil Ecology 40 (1):182–88. doi:10.1016/j.apsoil.2008.04.005.
  • Gagné, S., L. Dehbi, D. L. Quéré, F. Cayer, J. L. Morin, R. Lemay, and N. Fournier. 1993. Increase of greenhouse tomato fruit yields by plant growth-promoting rhizobacteria (PGPR) inoculated into the peat-based growing media. Soil Biology and Biochemistry 25 (2):269–72. doi:10.1016/0038-0717(93)90038-D.
  • Giora, B.-A., and L. Uri. 2012. Marker-assisted selection in plant breeding. In Plant Biotechnology and Agriculture, ed. A. Altman, P. M. Hasegawa, 163–184. Elsevier, Amsterdam. doi:10.1016/B978-0-12-381466-1.00011-0.
  • Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41 (2):109–17. doi:10.1139/m95-015.
  • Gomez, M. Y., M. M. Schroeder, N. K. M. Maha Chieb, and E. W. Gachomo. 2023. Bradyrhizobium japonicum IRAT FA3 promotes salt tolerance through jasmonic acid priming in Arabidopsis thaliana. BMC Plant Biology 23 (1):60. doi:10.1186/s12870-022-03977-z.
  • Gowtham, H. G., S. Brijesh Singh, M. Murali, N. Shilpa, M. Prasad, M. Aiyaz, K. N. Amruthesh, and S. R. Niranjana. 2020. Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis rhizo SF 48. Microbiological Research 234:126422. doi:10.1016/j.micres.2020.126422.
  • Gowtham, H. G., S. B. Singh, N. Shilpa, M. Aiyaz, K. Nataraj, A. C. Udayashankar, K. N. Amruthesh, M. Murali, P. Poczai, A. Gafur, et al. 2022. Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: A review. Antioxidants 11(9):1763. doi:10.3390/antiox11091763.
  • Gusain, P., and B. S. Bhandari. 2019. Rhizosphere associated PGPR functioning. Journal of Pharmacognosy and Phytochemistry 8:1181–91.
  • Haque, M. M., M. K. Mosharaf, M. Khatun, M. A. Haque, M. S. Biswas, M. S. Islam, M. M. Islam, H. B. Shozib, M. M. U. Miah, A. H. Molla, et al. 2020. Biofilm producing rhizobacteria with multiple plant growth-promoting traits promote growth of tomato under water-deficit stress. Frontiers in Microbiology 11:542053. doi:10.3389/fmicb.2020.542053.
  • Hasanuzzaman, M., K. Nahar, M. M. Alam, R. Roychowdhury, and M. Fujita. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14 (5):9643–84. doi:10.3390/ijms14059643.
  • Hassan, T. U., A. Bano, and I. Naz. 2017. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. International Journal of Phytoremediation 19 (6):522–29. doi:10.1080/15226514.2016.1267696.
  • Hatfield, J. L., and J. H. Prueger. 2015. Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes 10:4–10. doi:10.1016/j.wace.2015.08.001.
  • Ha-Tran, D. M., T. T. M. Nguyen, S. H. Hung, E. Huang, and C. C. Huang. 2021. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. International Journal of Molecular Sciences 22 (6):3154. doi:10.3390/ijms22063154.
  • Husna, A., M. S. Hussain, M. Hamayun, A. Iqbal, M. Qadir, A. Alataway, A. Z. Dewidar, H. O. Elansary, and I.-J. Lee. 2023. Phytohormones producing rhizobacteria alleviate heavy metals stress in soybean through multilayered response. Microbiological Research 266:127237. doi:10.1016/j.micres.2022.127237.
  • Ilangumaran, G., and D. L. Smith. 2017. Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Frontiers in Plant Science 8:1768. doi:10.3389/fpls.2017.01768.
  • Ilyas, N., N. Akhtar, A. Naseem, R. Qureshi, A. Majeed, M. M. Al-Ansari, L. Al-Humaid, R. Z. Sayyed, and K. M. Pajerowska-Mukhtar. 2022. The potential of Bacillus subtilis and phosphorus in improving the growth of wheat under chromium stress. Journal of Applied Microbiology 133 (6):3307–21. doi:10.1111/jam.15676.
  • Imran, M., C. L. Mpovo, M. Aaqil Khan, S. Shaffique, D. Ninson, S. Bilal, M. Khan, E. H. Kwon, S. M. Kang, B. W. Yun, et al. 2023. Synergistic effect of melatonin and lysinibacillus fusiformis L. (PLT16) to mitigate drought stress via regulation of hormonal, antioxidants system, and physio-molecular responses in soybean plants. International Journal of Molecular Sciences 24 (10):8489. doi:10.3390/ijms24108489.
  • Islam, M., and A. Sandhi. 2022. Heavy metal and drought stress in plants: The role of microbes—a review. Gesunde Pflanzen 75 (4):695–708. doi:10.1007/s10343-022-00762-8.
  • Jiang, Z., X. Zhou, M. Tao, F. Yuan, L. Liu, F. Wu, and X. Wu. 2019. Plant cell-surface gipc sphingolipids sense salt to trigger Ca2+ influx. Nature 572 (7769):341–46. doi:10.1038/s41586-019-1449-z.
  • Kabiraj, A., K. Majhi, U. Halder, M. Let, and R. Bandopadhyay. 2020. Role of plant growth-promoting rhizobacteria (PGPR) for crop stress management. Sustainable Agriculture in the Era of Climate Change 367–89. doi:10.1007/978-3-030-45669-6_17.
  • Kang, D. J., and H. Tazoe. 2022. Effect of drought stress or soil pH on cesium accumulation in Napier grass. Environmental Monitoring and Assessment 195 (1):193. doi:10.1007/s10661-022-10817-y.
  • Karnwal, A. 2021. Screening and identification of abiotic stress-responsive efficient antifungal pseudomonas spp. From rice rhizospheric soil. BioTechnologia 102 (1):5–19. doi:10.5114/bta.2021.103758.
  • Kaushal, P., N. Ali, S. Saini, P. K. Pati, and A. M. Pati. 2023. Physiological and molecular insight of microbial biostimulants for sustainable agriculture. Frontiers in Plant Science 14. doi:10.3389/fpls.2023.1041413.
  • Khan, N., S. Ali, M. A. Shahid, A. Mustafa, R. Z. Sayyed, and J. A. Curá. 2021. Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: A review. Cells 10 (6):1551. doi:10.3390/cells10061551.
  • Khumairah, F. H., M. R. Setiawati, B. N. Fitriatin, T. Simarmata, S. Alfaraj, M. J. Ansari, H. A. E. Enshasy, R. Z. Sayyed, and S. Najafi. 2022. Halotolerant plant growth-promoting rhizobacteria isolated from saline soil improve nitrogen fixation and alleviate salt stress in rice plants. Frontiers in Microbiology 13:905210. doi:10.3389/fmicb.2022.905210.
  • Koza, N., A. Adedayo, O. Babalola, and A. Kappo. 2022. Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms 10 (8):1528. doi:10.3390/microorganisms10081528.
  • Kumar, A., J. S. Patel, V. S. Meena, and R. Srivastava. 2019. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatalysis and Agricultural Biotechnology 20:101271. doi:10.1016/j.bcab.2019.101271.
  • Kumar, A., O. V. Tripti, M. Maleva, K. Panikovskaya, G. Borisova, M. Rajkumar, and L. B. Bruno. 2021. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus. Chemosphere 266:128983. doi:10.1016/j.chemosphere.2020.128983.
  • Kusale, S. P., Y. C. Attar, R. Z. Sayyed, R. A. Malek, N. Ilyas, N. L. Suriani, N. Khan, and H. A. El Enshasy. 2021. Production of plant beneficial and antioxidants metabolites by Klebsiella variicola under salinity stress. Molecules 26 (7):1894. doi:10.3390/molecules26071894.
  • Lalay, G., S. Ullah, and I. Ahmed. 2022. Physiological and biochemical responses of Brassica napus L. to drought‐induced stress by the application of biochar and plant growth promoting rhizobacteria. Microscopy Research and Technique 85 (4):1267–81. doi:10.1002/jemt.23993.
  • Lata, R., S. Chowdhury, S. K. Gond, and J. F. White. 2018. Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in Applied Microbiology 66 (4):268–76. doi:10.1111/lam.12855.
  • Leontidou, K., S. Genitsaris, A. Papadopoulou, N. Kamou, I. Bosmali, T. Matsi, P. Madesis, D. Vokou, K. Karamanoli, and I. Mellidou. 2020. Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: Genomic characterisation and exploration of phyto-beneficial traits. Scientific Reports 10 (1):14857. doi:10.1038/s41598-020-71652-0.
  • Li, N., D. Euring, J. Y. Cha, Z. Lin, M. Lu, L.-J. Huang, and W. Y. Kim. 2021. Plant hormone mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science 11. doi:10.3389/fpls.2020.627969.
  • Lim, C. W., W. Baek, J. Jung, J. H. Kim, and S. C. Lee. 2015. Function of ABA in stomatal defense against biotic and drought stresses. International Journal of Molecular Sciences 16 (7):15251–70. doi:10.3390/ijms160715251.
  • Liu, M., J. Philp, Y. Wang, J. Hu, Y. Wei, J. Li, M. Ryder, R. Toh, Y. Zhou, M. D. Denton, et al. 2022. Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community. Scientific Reports 12 (1):8381. doi:10.1038/s41598-022-12472-2.
  • Liu, H., S. Song, H. Zhang, Y. Li, L. Niu, J. Zhang, and W. Wang. 2022. Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. International Journal of Molecular Sciences 23 (23):14824. doi:10.3390/ijms232314824.
  • Li, Y., X. You, Z. Tang, T. Zhu, B. Liu, M. X. Chen, Y. Xu, and T. Y. Liu. 2022. Isolation and identification of plant growth-promoting rhizobacteria from tall fescue rhizosphere and their functions under salt stress. Physiologia Plantarum 174 (6):e13817. doi:10.1111/ppl.13817.
  • Macabuhay, A., B. Arsova, M. Watt, K. A. Nagel, H. Lenz, A. Putz, and S. Adels. 2022. Plant growth promotion and heat stress amelioration in Arabidopsis inoculated with Paraburkholderia hytofirmans PsJN rhizobacteria quantified with the GrowScreen-agar II phenotyping platform. Plants 11(21):2927. doi:10.3390/plants11212927.
  • Marulanda, A., R. Porcel, J. M. Barea, and R. Azcón. 2007. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microbial Ecology 54 (3):543–52. doi:10.1007/s00248-007-9237-y.
  • Mathur, S., R. Agnihotri, M. P. Sharma, V. R. Reddy, and A. Jajoo. 2021. Effect of high temperature stress on plant physiological traits and mycorrhizal symbiosis in maize plants. Journal of Fungi 7 (10):867. doi:10.3390/jof7100867.
  • Mayak, S., T. Tirosh, and B. R. Glick. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry 42 (6):565–72. doi:10.1016/j.plaphy.2004.05.009.
  • Mehmood, S., M. A. Muneer, M. Tahir, M. T. Javed, T. Mahmood, M. S. Afridi, N. P. Pakar, H. A. Abbasi, M. F. H. Munis, and H. J. Chaudhary. 2021. Deciphering distinct biological control and growth promoting potential of multi-stress tolerant Bacillus subtilis PM32 for potato stem canker. Physiology & Molecular Biology of Plants 27 (9):2101–14. doi:10.1007/s12298-021-01067-2.
  • Mekureyaw, M. F., C. Pandey, R. C. Hennessy, M. H. Nicolaisen, F. Liu, O. Nybroe, and T. Roitsch. 2022. The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. Journal of Plant Physiology 270:153629. doi:10.1016/j.jplph.2022.153629.
  • Mitra, D., A. M. D. Rodríguez, F. I. P. Cota, B. Khoshru, P. Panneerselvam, S. Moradi, M. S. Sagarika, S. Anđelković, S. de Los Santos-Villalobos, and P. K. Das Mohapatra. 2021. Amelioration of thermal stress in crops by plant growth-promoting rhizobacteria. Physiological and Molecular Plant Pathology 115:101679. doi:10.1016/j.pmpp.2021.101679.
  • Morcillo, R. J. L., and M. Manzanera. 2021. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites 11 (6):337. doi:10.3390/metabo11060337.
  • Mukhtar, T., S. Ur Rehman, D. Smith, T. Sultan, M. F. Seleiman, A. A. Alsadon, and Amna. 2020. Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: Effects on biochemical profiling. Sustainability 12 (6):2159. doi:10.3390/su12062159.
  • Murali, M., S. B. Singh, H. G. Gowtham, N. Shilpa, M. Prasad, M. Aiyaz, and K. N. Amruthesh. 2021. Induction of drought tolerance in Pennisetum glaucum by ACC deaminase producing PGPR- Bacillus amyloliquefaciens through antioxidant defense system. Microbiological Research 253:126891. doi:10.1016/j.micres.2021.126891.
  • Murphy, J. F., G. W. Zehnder, D. J. Schuster, E. J. Sikora, J. E. Polston, and J. W. Kloepper. 2000. Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Disease 84 (7):779–84. doi:10.1094/PDIS.2000.84.7.779.
  • Nadeem, S. M., Z. A. Zahir, M. Naveed, and M. Arshad. 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Canadian Journal of Microbiology 53 (10):1141–49. doi:10.1139/W07-081.
  • Nafees, M., S. Ullah, and I. Ahmed. 2022. Modulation of drought adversities in Vicia faba by the application of plant growth promoting rhizobacteria and biochar. Microscopy Research and Technique 85 (5):1856–69. doi:10.1002/jemt.24047.
  • Nagrale, D. T., A. Chaurasia, S. Kumar, S. P. Gawande, N. S. Hiremani, R. Shankar, N. Gokte-Narkhedkar, Renu, and Y. G. Prasad. 2023. PGPR: The treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World Journal of Microbiology & Biotechnology 39 (4):100. doi:10.1007/s11274-023-03536-0.
  • Naqqash, T., S. Hameed, A. Imran, M. K. Hanif, A. Majeed, and J. D. van Elsas. 2016. Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Frontiers in Plant Science 7:144. doi:10.3389/fpls.2016.00144.
  • Nawaz, M. S., A. Arshad, L. Rajput, K. Fatima, S. Ullah, M. Ahmad, and A. Imran. 2020. Growth stimulatory effect of quorum sensing signal molecule N-Acyl-homoserine lactone-producing multi-trait Aeromonas spp. on wheat genotypes under salt stress. Frontiers in Microbiology 11:553621. doi:10.3389/fmicb.2020.553621.
  • Nazari, M., and D. L. Smith. 2020. A PGPR produced bacteriocin for sustainable agriculture: A review of thuricin 17 characteristics and applications. Frontiers in Plant Science 11:916. doi:10.3389/fpls.2020.00916.
  • Nazari, M., I. Yaghoubian, and D. L. Smith. 2022. The stimulatory effect of Thuricin 17, a PGPR-produced bacteriocin, on canola (Brassica napus L.) germination and vegetative growth under stressful temperatures. Frontiers in Plant Science 13:1079180. doi:10.3389/fpls.2022.1079180.
  • Nazir, N., A. N. Kamili, and D. Shah. 2018. Mechanism of plant growth promoting rhizobacteria (PGPR) in enhancing plant growth-A review. International Journal of Management, Technology, and Engineering 8:709–21.
  • Nemat, H., A. A. Shah, W. Akram, M. Ramzan, and N. A. Yasin. 2020. Ameliorative effect of co-application of Bradyrhizobium japonicum EI09 and Se to mitigate chromium stress in Capsicum annum L. International Journal of Phytoremediation 22 (13):1396–407. doi:10.1080/15226514.2020.1780412.
  • Nephali, L., V. Moodley, L. Piater, P. Steenkamp, N. Buthelezi, I. Dubery, K. Burgess, J. Huyser, and F. Tugizimana. 2021. A metabolomic landscape of maize plants treated with a microbial biostimulant under well-watered and drought conditions. Frontiers in Plant Science 12:676632. doi:10.3389/fpls.2021.676632.
  • Nozari, R. M., F. Ortolan, L. V. Astarita, and E. R. Santarém. 2021. Streptomyces spp. enhance vegetative growth of maize plants under saline stress. Brazilian Journal of Microbiology 52 (3):1371–83. doi:10.1007/s42770-021-00480-9.
  • Oleńska, E., W. Małek, M. Wójcik, I. Swiecicka, S. Thijs, and J. Vangronsveld. 2020. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment 743:140682. doi:10.1016/j.scitotenv.2020.140682.
  • Orozco-Mosqueda, M., Del C, A. Flores, B. Rojas-Sánchez, C. A. Urtis-Flores, L. R. Morales-Cedeño, M. F. Valencia-Marin, S. Chávez-Avila, D. Rojas-Solis, and G. Santoyo. 2021. Plant growth-promoting bacteria as bioinoculants: Attributes and challenges for sustainable crop improvement. Agronomy 11 (6):1167. doi:10.3390/agronomy11061167.
  • Panchami, P. S., K. Geetha Thanuja, and S. Karthikeyan. 2020. Isolation and characterization of indigenous plant growth-promoting rhizobacteria (PGPR) from cardamom rhizosphere. Current Microbiology 77 (10):2963–81. doi:10.1007/s00284-020-02116-x.
  • Pathania, P., D. Gulati, H. Setia, and R. Bhatia. 2023. Characterization and performance evaluation of plant growth promoting bacteria in tomato rhizosphere. South African Journal of Botany 161:388–94. doi:10.1016/j.sajb.2023.08.037.
  • Paul, D., and S. Nair. 2008. Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. Journal of Basic Microbiology 48 (5):378–84. doi:10.1002/jobm.200700365.
  • Pereira, S. I. A., D. Abreu, H. Moreira, A. Vega, and P. M. L. Castro. 2020. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon 6 (10):e05106. doi:10.1016/j.heliyon.2020.e05106.
  • Poudel, M., R. Mendes, L. A. S. Costa, C. G. Bueno, Y. Meng, S. Y. Folimonova, K. A. Garrett, and S. J. Martins. 2021. The role of plant associated bacteria, fungi, and viruses in drought stress mitigation. Frontiers in Microbiology 12:743512. doi:10.3389/fmicb.2021.743512
  • Rajkumar, M., N. Ae, M. N. Prasad, and H. Freitas. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology 28 (3):142–49. doi:10.1016/j.tibtech.2009.12.002.
  • Razi, K., and S. Muneer. 2021. Drought stress induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Critical Reviews in Biotechnology 41 (5):669–91. doi:10.1080/07388551.2021.1874280.
  • Rizvi, A., and M. S. Khan. 2018. Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicology and Environmental Safety 157:9–20. doi:10.1016/j.ecoenv.2018.03.063
  • Rouphael, Y., and G. Colla. 2020. Editorial: Biostimulants in agriculture. Frontiers in Plant Science 11:40. doi:10.3389/fpls.2020.00040.
  • Santoyo, G., C. A. Urtis-Flores, P. D. Loeza-Lara, M. Del C Orozco-Mosqueda, and B. R. Glick. 2021. Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology 10 (6):475. doi:10.3390/biology10060475.
  • Saradadevi, R., J. A. Palta, and K. H. M. Siddique. 2017. ABA-mediated stomatal response in regulating water use during the development of terminal drought in wheat. front. Frontiers in Plant Science 8:1251. doi:10.3389/fpls.2017.01251.
  • Sarker, A., M. W. R. Ansary, M. N. Hossain, and T. Islam. 2021. Prospect and challenges for sustainable management of climate change-associated stresses to soil and plant health by beneficial rhizobacteria. Stresses 1 (4):200–22. doi:10.3390/stresses1040015.
  • Saud, S., D. Wang, S. Fahad, T. Javed, M. Jaremko, N. R. Abdelsalam, and R. Y. Ghareeb. 2022. The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. Frontiers in Plant Science 13:994785. doi:10.3389/fpls.2022.994785.
  • Sen, S., D. Ghosh, and S. Mohapatra. 2018. Modulation of polyamine biosynthesis in Arabidopsis thaliana by a drought mitigating Pseudomonas putida strain. Plant Physiology and Biochemistry 129:180–88. doi:10.1016/j.plaphy.2018.05.034.
  • Senthil Kumar, R., S. Koner, H. C. Tsai, J. S. Chen, S. W. Huang, and B. M. Hsu. 2023. Deciphering endemic rhizosphere microbiome community’s structure towards the host-derived heavy metals tolerance and plant growth promotion functions in serpentine geo-ecosystem. Journal of Hazardous Materials 452:131359. doi:10.1016/j.jhazmat.2023.131359.
  • Shaffique, S., S. Hussain, S.-M. Kang, M. Imran, E.-H. Kwon, M. A. Khan, and I.-J. Lee. 2023. Recent progress on the microbial mitigation of heavy metal stress in soybean: Overview and implications. Frontiers in Plant Science 14:1188856. doi:10.3389/fpls.2023.1188856.
  • Singh, J., A. V. Singh, V. K. Upadhayay, A. Khan, and R. Chandra. 2022. Prolific contribution of Pseudomonas protegens in Zn biofortification of wheat by modulating multifaceted physiological response under saline and non-saline conditions. World Journal of Microbiology and Biotechnology 38 (12):227. doi:10.1007/s11274-022-03411-4.
  • Sinha, R., F. B. Fritschi, S. I. Zandalinas, and R. Mittler. 2021. The impact of stress combination on reproductive processes in crops. Plant Science 311:111007. doi:10.1016/j.plantsci.2021.111007.
  • Steil, L., T. Hoffmann, I. Budde, U. Völker, and E. Bremer. 2003. Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. Journal of Bacteriology 185 (21):6358–70. doi:10.1128/JB.185.21.6358-6370.2003.
  • Sultana, S., S. C. Paul, S. Parveen, S. Alam, N. Rahman, B. Jannat, S. Hoque, M. T. Rahman, and M. M. Karim. 2020. Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress. Canadian Journal of Microbiology 66 (2):144–60. doi:10.1139/cjm-2019-0323.
  • Sziderics, A. H., F. Rasche, F. Trognitz, A. Sessitsch, and E. Wilhelm. 2007. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Canadian Journal of Microbiology 53 (11):1195–202. doi:10.1139/W07-082.
  • Tak, H. I., F. Ahmad, and O. O. Babalola. 2013. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Reviews of Environmental Contamination and Toxicology 223:33–52. doi:10.1007/978-1-4614-5577-6_2.
  • Tank, N., and M. Saraf. 2009. Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. Journal of Basic Microbiology 49 (2):195–204. doi:10.1002/jobm.200800090.
  • Tiwari, S., V. Prasad, P. S. Chauhan, and C. Lata. 2017. Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Frontiers in Plant Science 8:1510. doi:10.3389/fpls.2017.01510.
  • Vejan, P., R. Abdullah, T. Khadiran, S. Ismail, and A. Nasrulhaq Boyce. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 21 (5):573. doi:10.3390/molecules21050573.
  • Völker, U., S. Engelmann, B. Maul, S. Riethdorf, A. Völker, R. Schmid, and M. Hecker. 1994. Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology (Reading, England) 140 (4):741–52. doi:10.1099/00221287-140-4-741.
  • von der Weid, I., E. Paiva, A. Nóbrega, J. D. van Elsas, and L. Seldin. 2000. Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Research in Microbiology 151 (5):369–81. doi:10.1016/s0923-2508(00)00160-1.
  • Vurukonda, S. S. K. P., S. Vardharajula, M. Shrivastava, and A. SkZ. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research 184:13–24. doi:10.1016/j.micres.2015.12.003.
  • Waadt, R., C. A. Seller, P. K. Hsu, Y. Takahashi, S. Munemasa, and J. I. Schroeder. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology 23 (10):680–94. doi:10.1038/s41580-022-00479-6.
  • Wang, Y., K. Chen, Z. Li, Y. Wu, K. Guo, J. Li, and H. Yang. 2014. Isolation and identification of nematicidal active substance from Burkholderia vietnamiensis B418. Plant Protection 40:65–69.
  • Wang, Y., M. Narayanan, X. Shi, X. Chen, Z. Li, D. Natarajan, and Y. Ma. 2022. Plant growth-promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms. Frontiers in Microbiology 13:966226. doi:10.3389/fmicb.2022.966226.
  • Wang, C., H. Wang, Y. Li, Q. Li, W. Yan, Y. Zhang, Z. Wu, and Q. Zhou. 2021. Plant growth-promoting rhizobacteria isolation from rhizosphere of submerged macrophytes and their growth-promoting effect on Vallisneria natans under high sediment organic matter load. Microbial Biotechnology 14 (2):726–36. doi:10.1111/1751-7915.13756.
  • Xie, Z., Y. Chu, W. Zhang, D. Lang, and X. Zhang. 2019. Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch. Environmental and Experimental Botany 158:99–106. doi:10.1016/j.envexpbot.2018.11.021.
  • Xiong, Y. W., X. W. Li, T. T. Wang, Y. Gong, C. M. Zhang, K. Xing, and S. Qin. 2020. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte limonium sinense under salt stress. Ecotoxicology and Environmental Safety 194:110374. doi:10.1016/j.ecoenv.2020.110374.
  • Xu, X. D., C. Zhang, C. Qin, Y. Y. Su, J. Zhou, H. Zhang, and L. X. Zhang. 2019. Effects of PGPR inoculation on photosynthesis and physiological-ecological characteristics of apple seedlings under drought stress. Ying Yong Sheng Tai Xue Bao 30 (10):3501–08. Chinese. doi:10.13287/j.1001-9332.201910.024.
  • Yang, J., J. W. Kloepper, and C.-M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trend in Plant Science 14 (1):1–4. doi:10.1016/j.tplants.2008.10.004.
  • Yildirim, E., M. Turan, and I. Guvenc. 2008. Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber (Cucumis sativus L.) grown under salt stress. Journal of Plant Nutrition 31 (3):593–612. doi:10.1080/01904160801895118.
  • Yuwono, T., D. Handayani, and J. Soedarsono. 2005. The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Australian Journal of Agricultural Research 56 (7):715–21. doi:10.1071/AR04082.
  • Zainab, N., B. U. D. Amna, M. T. Javed, M. S. Afridi, T. Mukhtar, and M. A. Kamran. 2020. Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC deaminase producing bacteria in industrially contaminated soils. Plant Physiology and Biochemistry 152:90–99. doi:10.1016/j.plaphy.2020.04.039.
  • Zamanzadeh-Nasrabadi, S. M., F. Mohammadiapanah, M. Hosseini-Mazinani, and S. Sarikhan. 2023. Salinity stress endurance of the plants with the aid of bacterial genes. Frontiers in Genetics 14:1049608. doi:10.3389/fgene.2023.1049608.
  • Zandi, P., and S. K. Basu. 2016. Role of plant growth-promoting rhizobacteria (PGPR) as biofertilizers in stabilizing agricultural ecosystems In Organic Farming for Sustainable Agriculture, ed. D. Nandwani, Vol. 9. Cham, Switzerland: Springer. doi:10.1007/978-3-319-26803-3_3.
  • Zerrouk, I. Z., B. Rahmoune, L. Khelifi, K. Mounir, F. Baluska, and J. Ludwig-Müller. 2019. Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiologiae Plantarum 41 (6):1–10. doi:10.1007/s11738-019-2881-2.
  • Zhu, T., L. Li, Q. Duan, X. Liu, and M. Chen. 2021. Progress in our understanding of plant responses to the stress of heavy metal cadmium. Plant Signaling & Behavior 16 (1):1836884. doi:10.1080/15592324.2020.1836884.
  • Zia, R., M. S. Nawaz, M. J. Siddique, S. Hakim, and A. Imran. 2021. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research 242:126626. doi:10.1016/j.micres.2020.126626.
  • Zia, R., M. S. Nawaz, S. Yousaf, I. Amin, S. Hakim, M. S. Mirza, and A. Imran. 2021. Seed inoculation of desert plant growth‐promoting rhizobacteria induce biochemical alterations and develop resistance against water stress in wheat. Physiologia Plantarum 172 (2):990–1006. doi:10.1111/ppl.13362.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.