249
Views
18
CrossRef citations to date
0
Altmetric
Review articles

Micro and macro benefits of random investments in financial markets

, &
Pages 318-334 | Received 08 Jan 2014, Accepted 22 May 2014, Published online: 10 Jul 2014

References

  • R.N. Mantegna and H.E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, Cambridge, 1999.
  • J.L. McCauley, Dynamics of Markets Econophysics and Finance, Cambridge University Press, Cambridge, 2007.
  • J.P. Bouchaud and M. Potters, Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, Cambridge University Press, Cambridge, 2003.
  • T.A. Bass, The Predictors: How a Band of Maverick Physicists Used Chaos Theory to Trade their Way to a Fortune on Wall Street, Henry Holt & Company, New York, 2000.
  • D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems, Princeton University Press, Princeton, 2004.
  • S. Galam, Sociophysics: A Physicist’s Modeling of Psycho-political Phenomena, Springer, Berlin, 2012.
  • D. Stauffer, Opinion dynamics and sociophysics, in Encyclopedia of Complexity and Systems Science, R.A. Meyers, ed., Springer, New York, 2009, pp. 6380–6388.
  • D. Helbing, Quantitative Sociodynamics, Kluwer, Dordrecht, 1995.
  • C. Castellano, S. Fortunato, and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys. 81 (2009), pp. 591–646.
  • N. Hart, Alfred Marshall and Modern Economics, Palgrave MacMillan, London, 2013, original citation at p. 16.
  • H.A. Simon, Models of Man, Wiley, New York, 1957.
  • M. Friedman, A Theory of the Consumption Function, Princeton University Press, Princeton, NJ, 1956.
  • N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. Phys. 21 (1953), p. 1087–1092.
  • K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction, Springer, Berlin, 1988.
  • R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Stochastic resonance in climate change, Tellus 34 (1982), pp. 10–16.
  • C. Nicolis, Stochastic aspects of climatic transitions – response to a periodic forcing, Tellus 34 (1982), pp. 1–9.
  • L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, Stochastic resonance, Rev. Mod. Phys. 70 (1998), pp. 223–287.
  • D. Stokic, R. Hanel, and S. Thurner, Inflation of the edge of chaos in a simple model of gene interaction networks, Phys. Rev. E 77 (2008), pp. 061917–061922.
  • R. Hanel, M. Pöchacker, M. Schölling, and S. Thurner, A self-organized model for cell-differentiation based on variation of molecular decay rates, PLOS ONE 7 (2012), p. e36679.
  • F. Caruso, S.F. Huelga, and M.B. Plenio, Noise-enhanced classical and quantum capacities in communication networks, Phys. Rev. Lett. 105 (2010), pp. 190501–190505.
  • F. Mossa, L.M. Wardb, and W.G. Sannitac, Stochastic resonance and sensory information processing: A tutorial and review of application, Clin. Neurophysiol. 115 (2004), pp. 267–281.
  • L.J. Peter and R. Hull, The Peter Principle: Why Things Always Go Wrong, William Morrow and Company, New York, 1969.
  • A. Pluchino, A. Rapisarda, and C. Garofalo, The Peter Principle revisited: A computational study, Physica A 389 (2010), p. 467. This paper was quoted by several blogs and specialized newspapers, among which the MIT blog, the New York Times and the Financial Times, and it was also awarded the IG Nobel prize 2010 for “Management”. For more info see the webpage: www.pluchino.it/ignobel.html.
  • A. Pluchino, A. Rapisarda, and C. Garofalo, Efficient promotion strategies in hierarchical organizations, Physica A 390 (2011), pp. 3496–3511.
  • A. Pluchino, C. Garofalo, A. Rapisarda, S. Spagano, and M. Caserta, Accidental politicians: How randomly selected legislators, can improve parliament efficiency, Physica A 390 (2011), p. 3944. Available at http://www.pluchino.it/Parliament.html.
  • J.B. Satinover and D. Sornette, “Illusion of control” in time-horizon minority and Parrondo games, Eur. Phys. J. B 60 (2007), pp. 369–384. J.B. Satinover and D. Sornette, Illusory versus genuine control in agent-based games, Eur. Phys. J. B 67 (2009), pp. 357–367.
  • R. Wiseman, Quirkology, Macmillan, London, 2007.
  • G.E. Porter, The long term value of analysts advice in the Wall Street Journals investment dartboard contest, J. Appl. Finance 14 (2004), pp. 52–65.
  • A. Clare, N. Motson, and S. Thomas, An evaluation of alternative equity indices. Cass consulting report March 2013. Available athttp://www.cassknowledge.com/research/article/evaluation-alternative-equity-indices-cass-knowledge.
  • A.E. Biondo, A. Pluchino, and A. Rapisarda, The beneficial role of random strategies in social and financial systems, J. Stat. Phys. 151 (2013), pp. 607–622.
  • A.E. Biondo, A. Pluchino, A. Rapisarda, and D. Helbing, Are random trading strategies more successful than technical ones? PLOS ONE 8(7) (2013), p. e68344. doi:10.1371/journal.pone.0068344.
  • A.E. Biondo, A. Pluchino, A. Rapisarda, and D. Helbing, Reducing Financial Avalanches by Random Investments, Phys. Rev. E 88 (2013), pp. 06814-1–06814-7.
  • A. Smith, An Inquiry into the Nature and Causes of the Wealth of Nations, Meuthen & Co., London, 1904.
  • D. Ricardo, Principles of Political Economy and Taxation, John Murray, London, 1817.
  • T.R. Malthus, Principles of Political Economy, W. Pickering, London, 1836.
  • A. Marshall, Principles of Economics, MacMillan, London, 1920.
  • F.Y. Edgeworth, Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences, C. Kegan Paul & Co., London, 1881.
  • W.S. Jevons, The Theory of Political Economy, MacMillan, London, 1888.
  • M.E.L. Walras, Elements D’Economie Politique Pure, R.Pichon et R.Durand-Auzias Editeurs, Paris, 1926.
  • E. von Bohm-Bawerk, The Positive Theory of Capital, MacMillan, London, 1889.
  • C. Menger, Principles of Economics, Ludwig von Mises Institute, 1871–2007.
  • I. Fisher, The Purchasing Power of Money, MacMillan, New York, 1922.
  • V. Pareto, Manuale di Economia Politica, Società Editrice Libraria, Milano, 1906.
  • J.M. Keynes, The General Theory of Unemployment, Interest and Money, MacMillan, London, 1936.
  • K.J. Arrow and M. Nerlove, A note on expectations and stability, Econometrica 26 (1958), pp. 297–305.
  • M. Friedman, The role of monetary policy, Am. Econ. Rev. 58 (1968), pp. 1–17.
  • E. Phelps, Phillips curve expectations of inflation, and output unemployment over time, Economica 34 (1967), pp. 254–281.
  • P. Cagan, The monetary dynamics of hyperinflation, in Studies in the Quantity Theory of Money, M. Friedman, ed., University of Chicago Press, Chicago, 1956, pp. 25–117.
  • J.F. Muth, Rational expectation and the theory of price movements, Econometrica 29 (1961), pp. 315–335.
  • R.E. Lucas, Expectations and the neutrality of money, J. Econ. Theory 4 (1972), pp. 103–124.
  • T.J. Sargent and N. Wallace, Rational expectations, the optimal monetary instrument, and the optimal money supply rule, J. Polit. Econ. 83 (1975), pp. 241–254.
  • E.F. Fama, Efficient capital markets: A review of theory and empirical work, J. Finance 25 (1970), pp. 383–423.
  • M. Jensen, Some anomalous evidence regarding market efficiency, J. Financ. Econ. 6 (1978), pp. 95–101.
  • B. Malkiel, Efficient Market Hypothesis. New Palgrave Dictionary of Money and Finance, Macmillan, London, 1992.
  • D.M. Cutler, J.M. Poterba, and L.H. Summers, What moves stock prices?, J. Portfolio Manage. 15 (1989), pp. 4–12.
  • R. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation, Econometrica 50 (1982), pp. 987–1008.
  • B.B. Mandelbrot, The variation of certain speculative prices, J. Bus. 36 (1963), pp. 394–419.
  • B.B. Mandelbrot, Fractals and Scaling in Finance, Springer, New York, 1997.
  • T. Lux, The stable Paretian hypothesis and the frequency of large returns: an examination of major German stocks, Appl. Financ. Econ. 6 (1996), pp. 463–475.
  • W.A. Brock, Pathways to randomness in the economy: Emergent non-linearity and chaos in economics and finance, Estud. Econ. 8 (1993), pp. 3–55.
  • W.A. Brock, Asset prices behavior in complex environments, in The Economy as an Evolving Complex System II, W.B. Arthur, S.N. Durlauf, and D.A. Lane, eds., Addison-Wesley, Reading, MA, 1997, pp. 385–423.
  • W.A. Brock and C.H. Hommes, A rational route to randomness, Econometrica 65 (1997), pp. 1059–1095.
  • C. Chiarella, The dynamics of speculative behavior, Ann. Oper. Res. 37 (1992), pp. 101–123.
  • C. Chiarella and T. He, Heterogeneous beliefs, risk and learning in a simple asset pricing model, Comput. Econ. – Special issue: Evolutionary processes in economics 19 (2002), pp. 95–132.
  • P. DeGrauwe, H. DeWachter, and M. Embrechts, Exchange Rate Theory. Chaotic Models of Foreign Exchange Markets, Blackwell, Oxford, 1993.
  • J.A. Frankel and K.A. Froot, Chartists, fundamentalists and the demand for dollars, Greek Econ. Rev. 10 (1988), pp. 49–102.
  • T. Lux, Herd behavior, bubbles and crashes, Econ. J. 105 (1995), pp. 881–896.
  • J. Wang, A model of competitive stock trading volume, J. Polit. Econ. 102 (1994), pp. 127–168.
  • E.C. Zeeman, The unstable behavior of stock exchange, J. Math. Econ. 1 (1974), pp. 39–49.
  • X. Gabaix, P. Gopikrishnan, V. Plerou, and H.E. Stanley, A theory of power-law distributions in financial market fluctuations, Nature 423 (2003), pp. 267–272.
  • T. Preis, D.Y. Kenett, H.E. Stanley, D. Helbing, and E. Ben-Jacob, Quantifying the behavior of stock correlations under market stress, Sci. Rep. 2 (2012), doi:10.1038/srep00752.
  • A. Carbone, G. Castelli, and H.E. Stanley, Time dependent Hurst exponent in financial time series, Physica A 344 (2004), pp. 267–271.
  • J.J. Murphy, Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications, New York Institute of Finance, New York, 1999.
  • N.N. Taleb, Fooled by Randomness: The Hidden Role of Chance in the Markets and in Life, Random House, New York, 2005.
  • M. Buchanan, Forecast: What Physics, Meteorology, and the Natural Sciences Can Teach us about Economics, Bloomsbury, New York, 2013.
  • D. Helbing and D. Kern, Non-equilibrium price theories, Physica A 287 (2000), pp. 259–268.
  • D. Helbing, I. Farkas, and T. Vicsek, Simulating dynamical features of escape panic, Nature 407 (2000), pp. 487–490.
  • S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, and Y. Dodge, Turbulent cascades in foreign exchange markets, Nature 381 (1996), pp. 767–770.
  • J.D. Farmer, Ind. Corp. Change 11 (2002), p. 895. doi:10.1093/icc/11.5.895.
  • J.-P. Bouchaud and M. Potterss, Theory of Financial Risks: From Statistical Physics to Risk Management, Cambridge University Press, Cambridge, 2000.
  • D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems, Princeton University Press, Princeton, 2003.
  • D. Helbing, Globally networked risks and how to respond, Nature 497 (2013), pp. 51–59.
  • A. Krawiecki, J.A. Holyst, and D. Helbing, Volatility clustering and scaling for financial time series due to attractor bubbling, Phys. Rev. Lett. 89 (2002), p. 158701.
  • D.R. Parisi, D. Sornette, and D. Helbing, Financial price dynamics and pedestrian counterflows: A comparison of statistical stylized facts, Phys. Rev. E 87 (2013), pp. 012804–158704.
  • S. Bikhchandani, D. Hirshleifer, and I. Welch, Informational cascades and rational herding: An annotated bibliography and resource reference, working paper Anderson School of Management, UCLA, 2008. Available at www.info-cascades.info.
  • P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett. 59 (1987), pp. 381–384.
  • Z. Olami, H.J.S. Feder, and K. Christensen, Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68 (1992), pp. 1244–1247.
  • F. Caruso, A. Pluchino, V. Latora, S. Vinciguerra, and A. Rapisarda, Analysis of self-organized criticality in the OFC model and in real earthquakes, Phys. Rev. E 75 (2007), p. 055101(R).
  • F. Lillo and R.N. Mantegna, Power-law relaxation in a complex system: Omori law after a financial market crash, Phys. Rev. E 68 (2003), p. 016119.
  • F. Caruso, V. Latora, A. Pluchino, A. Rapisarda, and B. Tadic, Olami-Feder-Christensen model on different networks, Eur. Phys. J. B 50 (2006), pp. 243–247.
  • A.L. Barabasi and R. Albert, Emergence of scaling in random networks, Science 286 (1999), p. 509–512.
  • D. Helbing, Economics 2.0: The Natural step towards a self-regulating, participatory market society, Evol. Inst. Econ. Rev. 10 (2013), pp. 3–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.