1,260
Views
39
CrossRef citations to date
0
Altmetric
Review articles

Nano-optomechanics with optically levitated nanoparticles

&
Pages 48-62 | Received 24 Jul 2014, Accepted 23 Sep 2014, Published online: 07 Nov 2014

References

  • A. Ashkin, Accerleration and trapping of particles by radiation pressure, Phys. Rev. Lett. 24 (1970), pp. 156–159.
  • A. Ashkin and J.M. Dziedzic, Optical Levitation by Radiation Pressure, App. Phys. Lett. 19 (1971), pp. 283–285.
  • A. Ashkin and J.M. Dziedzic, Stability of optical levitation by radiation pressure, App. Phys. Lett. 24 (1974), pp. 586–588.
  • A. Ashkin and J.M. Dziedzic, Optical levitation in high vacuum, App. Phys. Lett. 28 (1976), pp. 333–335.
  • A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11 (1986), pp. 288–290.
  • R. Omori, T. Kobayashi, and A. Suzuki, Observation of a single-beam gradient-force optical trap for dielectric particles in air, Opt. Lett. 22 (1997), pp. 816–818.
  • A. Ashkin, J.M. Dziedzic, and T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature 330 (1971), pp. 769–771.
  • K. Svoboda and S.M. Block, Biologial applications of optical forces, Annu. Rev. Biophys. Struct. 23 (1994), pp. 247–285.
  • K.C. Neuman and N. Attila, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy, Nat. Meth. 5 (2008), pp. 491–505.
  • T.T. Perkins, Optical traps for single molecule biophysics: a primer, Laser Phot. Rev. 3 (2009), pp. 203–220.
  • P.C. Ashok and K. Dholakia, Optical trapping for analytical biotechnology, Curr. Opin. Biotechnol. 23 (2012), pp. 16–21.
  • B. Abbott, et al., Observation of a kilogram-scale oscillator near its quantum ground state, New J. Phys. 11 (2009), 073032.
  • O. Romero-Isart, Quantum superposition of massive objects and collapse models, Phys. Rev. A 84 (2011), 052121.
  • K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, and M. Arndt, Colloquium: quantum interference of clusters and molecules, Rev. Mod. Phys. 84 (2012), pp. 157–173.
  • A. La Porta and M.D. Wang, Optical Torque wrench: angular trapping, rotation, and torque detection of quartz microparticles, Phys. Rev. Lett. 92 (2004), 190801.
  • A.I. Bishop, T.A. Nieminen, N.R. Heckenberg, and H. Rubinsztein-Dunlop, Optical microrheology using rotating laser-trapped particles, Phys. Rev. Lett. 92 (2004), 198104.
  • M. Bhattacharya and P. Meystre, Using a Laguerre–Gaussian beam to trap and cool the rotational motion of a mirror, Phys. Rev. Lett. 99 (2007), 153603.
  • Y. Arita, M. Mazilu, and K. Dholakia, Laser-induced rotation and cooling of a trapped microgyroscope in vacuum, Nat. Comm. 4 (2013), 2374.
  • L. Novotny and B. Hecht, Principles of Nano-optics, Cambridge University Press, Cambridge, UK, 2006.
  • T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, G. Knner, A.M. Braczyk, N.R. Heckenberg, and H. Rubinsztein-Dunlop, Optical tweezers computational toolbox, J. Opt. A: Pure Appl. Opt. 9 (2007), S196.
  • P.B. Bareil and Y. Sheng, Modeling highly focused laser beam in optical tweezers with the vector Gaussian beam in the T-matrix method, J. Opt. Soc. Am. A 30 (2013), pp. 1–6.
  • A. Vamivakas, R. Younger, S.B. Ippolito, B.B. Godberg, A.K. Swan, M.S. Unlu, and E. Behringer, A case study for optics: the solid immersion microscope, Am. J. Phys. 76 (2008), pp. 758–768.
  • L.G. Gouy, Sur une propriete nouvelle des ondes lumineuses., C. R. Acad. Sci. Paris 110 (1890), pp. 1251–1253.
  • H.C. Hulst and H. Van De Hulst, Light scattering by small particles, Courier Dover Publications, New York, 1957.
  • F. Gittes and F. Schmidt, Interference model for back-focal-plane displacement detection in optical tweezers, Opt. Lett. 23 (1998), pp. 7–9.
  • J.E. Molloy and M.J. Padgett, Lights, action: optical tweezers, Contemp. Phys. 43 (2002), pp. 241–258.
  • K.C. Neuman and S.M. Block, Optical trapping, Rev. Sci. Instr. 75 (2004), pp. 2787–2809.
  • T. Li, S. Kheifets, D. Medellin, and M.G. Raizen, Measurement of the instantaneous velocity of a Brownian particle, Science 328 (2010), pp. 1673–1675.
  • T. Li, S. Kheifets, and M.G. Raizen, Millikelvin cooling of an optically trapped microsphere in vacuum, Nat. Phys. 7 (2011), pp. 527–530.
  • B.V. Derjaguin, V.M. Muller, and Y.P. Toporov, Effect of deformations on the adhesion of particles, J. Colloid Interface Sci. 53 (1975), pp. 314–326.
  • N. Kiesel, F. Blase, U. Delić, D. Grass, R. Kaltenbaek, and M. Aspelmeyer, Cavity cooling of an optically levitated submicron particle, Proc. Nat. Acad. Sci. 110 (2013), pp. 14180–14185.
  • T.S. Monteiro, J. Millen, G.A.T. Pender, F. Marquardt, D. Chang, and P.F. Barker, Dynamics of levitated nanospheres: towards the strong cupling regime, New J. Phys. 13 (2013), 015001.
  • D.E. Chang, C.A. Regal, S.B. Papp, D.J. Wilson, J. Ye, O. Painter, H.J. Kimble, and P. Zoller, Cavity opto-mechanics using an optically levitated nanosphere, Proc. Nat. Acad. Sci. 107 (2010), pp. 1005–1010.
  • O. Romero-Isart, M.L. Juan, R. Quidant, and J.I. Cirac, Toward quantum superposition of living organisms, New J. Phys. 12 (2010), 033015.
  • S.A. Beresnev, V.G. Chernyak, and G.A. Fomyagin, Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization, J. Fluid Mech. 219 (1990), pp. 405–421.
  • J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, Subkelvin parametric feedback cooling of a laser-trapped nanoparticle, Phys. Rev. Lett. 109 (2012), 103603.
  • G. Volpe, G. Kozyreff, and D. Petrov, Backscattering position detection for photonic force microscopy, J. Appl. Phys. 102 (2007), 084701.
  • I. Wilson-Rae, N. Nooshi, W. Zwerger, and T.J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99 (2007), 093901.
  • T.J. Kippenberg and K.J. Vahala, Cavity optomechanics: back-action at the mesoscale, Science 321 (2008), pp. 1172–1176.
  • S. Nimmrichter, K. Hammerer, P. Asenbaum, H. Ritsch, and M. Arndt, Master equation for the motion of a polarizable particle in a multimode cavity, New J. Phys. 12 (2010), 083003.
  • G.A.T. Pender, P.F. Barker, F. Marquardt, J. Millen, and T.S. Monteiro, Optomechanical cooling of levitated spheres with doubly resonant fields, Phys. Rev. A 85 (2012), 021802.
  • F. Diedrich, J.C. Bergquist, W.M. Itano, and D.J. Wineland, Laser cooling to the zero-point energy of motion, Phys. Rev. Lett. 62 (1989), pp. 403–406.
  • V. Vuletić, C. Chin, A.J. Kerman, and S. Chu, Degenerate raman sideband cooling of trapped cesium atoms at very high atomic densities, Phys. Rev. Lett. 81 (1998), pp. 5768–5771.
  • A. Reiserer, C. Nölleke, S. Ritter, and G. Rempe, Ground-state cooling of a single atom at the center of an optical cavity, Phys. Rev. Lett. 110 (2013), 223003.
  • Z.Q. Yin, T. Li, and M. Feng, Three-dimensional cooling and detection of a nanosphere with a single cavity, Phys. Rev. A 83 (2011), 013816.
  • O. Romero-Isart, A.C. Pflanzer, M.L. Juan, R. Quidant, N. Kiesel, M. Aspelmeyer, and J.I. Cirac, Optically levitating dielectrics in the quantum regime: theory and protocols, Phys. Rev. A 83 (2011), 013803.
  • A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T.J. Kippenberg, Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nat. Phys. 5 (2009), pp. 509–514.
  • J.D. Teufel, T. Donner, D. Li, J.W. Harlow, M.S. Allman, K. Cicak, A.J. Sirois, J.D. Whittaker, K.W. Lehnert, and R.W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature 475 (2011), pp. 359–363.
  • V. Fiore, Y. Yang, M.C. Kuzyk, R. Barbour, L. Tian, and H. Wang, Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett. 107 (2011), 133601.
  • E. Gavartin, P. Verlot, and T.J. Kippenberg, A hybrid on-chip optomechanical transducer for ultrasensitive force measurements, Nat. Nanotechnol. 7 (2012), pp. 509–514.
  • L.P. Neukirch, J. Giesleser, R. Quidant, L. Novotny, and A.N. Vamivakas, Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond, Opt. Lett. 38 (2013), pp. 2976–2979.
  • J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G. WalleVan de and D.D. Awschalom, Quantum computing with defects, Proc. Nat. Acad. Sci. 107 (2010), pp. 8513–8518.
  • D. Riedel, F. Fuchs, H. Kraus, S. Väth, A. Sperlich, V. Dyakonov, A.A. Soltamova, P.G. Baranov, V.A. Ilyin, and G.V. Astakhov, Resonant Addressing and manipulation of silicon vacancy qubits in silicon carbide, Phys. Rev. Lett. 109 (2012), 226402.
  • Z.Q. Yin, T. Li, X. Zhang, and L.M. Duan, Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling, Phys. Rev. A 88 (2013), 033614.
  • J. Moser, J. Guttinger, A. Eichler, M.J. Esplandiu, D.E. Liu, M.I. Dykman, and A. Bachtold, Ultrasensitive force detection with a nanotube mechanical resonator, Nat. Nano 8 (2013), pp. 493–496.
  • J. Gieseler, L. Novotny, and R. Quidant, Thermal nonlinearities in a nanomechanical oscillator, Nature Phys. 9 (2013), pp. 806–810.
  • A.A. Geraci, S.B. Papp, and J. Kitching, Short-range force detection using optically cooled levitated microspheres, Phys. Rev. Lett. 105 (2010), 101101.
  • P.W. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics, Academic Press, San Deigo, CA, 1993.
  • J. Millen, T. Deesuwan, P. Barker, and J. Anders, Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere, Nat. Nanotechnol. 9 (2014), pp. 425–429.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.