387
Views
5
CrossRef citations to date
0
Altmetric
Review articles

Higgs boson cosmology

Pages 468-476 | Received 11 May 2015, Accepted 01 Jun 2015, Published online: 24 Jul 2015

References

  • The CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012), pp. 30–61.
  • The ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012), pp. 1–29.
  • C. Quigg, Higgs bosons, electroweak symmetry breaking, and the physics of the Large Hadron Collider, Contemp. Phys. 48 (2007), pp. 1–11.
  • A.H. Guth, Inflationary Universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981), p. 347–356.
  • A. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. 108B (1982), p. 389–393.
  • A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982), p. 1220–1223.
  • A. Linde, Chaotic inflation, Phys. Lett. B 129 (1983), pp. 177–181.
  • P. Langacker. Introduction to the Standard Model and Electroweak Physics, in The Dawn of the LHC Era, TeoHan ed., World Scientific, Washington, DC, 2009, pp. 3–48.
  • K. Nakamura and P.D. Group, Review of particle physics, J. Phys. G: Nucl. Particle Phys. 37 (2010), p. 075021. Available at http://stacks.iop.org/0954-3899/37/i=7A/a=075021.
  • H. Georgi, H.R. Quinn, and S. Weinberg, Hierarchy of interactions in unified Gauge theories, Phys. Rev. Lett. 33 (1974), pp. 451–454. Available at http://link.aps.org/doi/10.1103/PhysRevLett.33.451.
  • A.R. Liddle and D.H. Lyth, The Primordial Density Perturbation, Cambridge University Press, Cambridge2009.
  • V.F. Mukhanov and G.V. Chibisov, Quantum fluctuations and a nonsingular universe, ZhPmR 33 (1981), pp. 549–553.
  • A. Guth and S.Y. Pi, Fluctuations in the new inflationary universe, Phys. Rev. Lett. 49 (1982), p. 1110–1113.
  • S.W. Hawking, The development of irregularities in a single bubble inflationary universe, Phys. Lett. B 115 (1982), p. 295–297.
  • J.M. Bardeen, P.J. Steinnhart, and M.S. Turner, Spontaneous creation Of almost scale-free density perturbations in an inflationary universe, Phys. Rev. D 28 (1983), p. 679–693.
  • S.W. Hawking and I.G. Moss, Fluctuations in the inflationary universe, Nucl. Phys. B 224 (1983), p. 180–192.
  • The PLANCK collaboration, Planck 2015 results, XX, Constraints on inflation, 2015.
  • The PLANCK collaboration, Joint Analysis of BICEP2/KeckArray and Planck Data, Phys. Rev. Lett. 114 (2015), p. 101301.
  • T. Futamase and K.i. Maeda, Chaotic Inflationary scenario in models having nonminimal coupling with curvature, Phys. Rev. D. 39 (1989), pp. 399–404.
  • D. Salopek, J. Bond, and J.M. Bardeen, Designing density fluctuation spectra in inflation, Phys. Rev. D 40 (1989), p. 1753–1788.
  • R. Fakir and W. Unruh, Improvement on cosmological chaotic inflation through nonminimal coupling, Phys. Rev. D 41 (1990), pp. 1783–1791.
  • D.I. Kaiser, Primordial spectral indices from generalized Einstein theories, Phys. Rev. D 52 (1995), pp. 4295–4306.
  • F. Bezrukov, The Higgs field as an inflaton, Class. Quant. Grav. 30 (2013), 214001.
  • F. Bezrukov and D. Gorbunov, Light inflaton after LHC8 and WMAP9 results, J. High Energy Phys. 1307 (2013), 140.
  • C. Burgess, H.M. Lee, and M. Trott, Power-counting and the validity of the classical approximation during inflation, J. High Energy Phys. 0909 (2009), 103.
  • J. Barbon and J. Espinosa, On the Naturalness of Higgs Inflation, Phys. Rev. D 79 (2009), 081302.
  • C. Burgess, H.M. Lee, and M. Trott, Comment on Higgs inflation and naturalness, J. High Energy Phys. 2010 (1007), p. 007.
  • M.P. Hertzberg, On Inflation with Non-minimal Coupling, J. High Energy Phys. 2010 (1011), p. 023.
  • M. Atkins and X. Calmet, Remarks on Higgs inflation, Phys. Lett. B 697 (2011), pp. 37–40.
  • I.G. Moss, Covariant One-loop Quantum Gravity and Higgs Inflation, 2014. arXiv:1409.2108v2.
  • C. Germani and A. Kehagias, New model of inflation with non-minimal derivative coupling of standard model Higgs Boson to gravity, Phys. Rev. Lett. 105 (2010), p. 011302.
  • C. Germani and A. Kehagias, UV-Protected Inflation, Phys. Rev. Lett. 106 (2011), 161302.
  • C. Germani and Y. Watanabe, UV-protected (Natural) inflation: Primordial fluctuations and non-Gaussian features, J. Cosmol. Astroparticle Phys. 1107 (2011), p. 031.
  • A. Katz and M. Perelstein, Higgs couplings and electroweak phase transition, J. High Energy Phys. 1407 (2014), 108.
  • J. Borrill and M. Gleiser, Thermal phase mixing during first order phase transitions, Phys. Rev. D 51 (1995), pp. 4111–4121.
  • M. Shaposhnikov, Baryon asymmetry of the universe in standard electroweak theory, Nucl. Phys. B 287 (1987), pp. 757–775.
  • G.R. Farrar and M. Shaposhnikov, Baryon asymmetry of the universe in the minimal Standard Model, Phys. Rev. Lett. 70 (1993), pp. 2833–2836.
  • V. Kuzmin, V. Rubakov, and M. Shaposhnikov, On anomalous electroweak baryon-number non-conservation in the early universe, Phys. Lett. B 155 (1985), pp. 36–42.
  • C. Grojean and G. Servant, Gravitational waves from phase transitions at the electroweak scale and beyond, Phys. Rev. D 75 (2007), p. 043507.
  • G. Baym, D. Bodeker, and L.D. McLerran, Magnetic fields produced by phase transition bubbles in the electroweak phase transition, Phys. Rev. D 53 (1996), pp. 662–667.
  • M. Carena, A. Megevand, M. Quiros, and C.E. Wagner, Electroweak baryogenesis and new TeV fermions, Nucl. Phys. B 716 (2005), pp. 319–351.
  • N. Turok and J. Zadrozny, Phase transitions in the two-doublet model, Nucl. Phys. B 369 (1992), pp. 729–742.
  • G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO, J. High Energy Phys. 1208 (2012), p. 098.
  • The ATLAS, CDF, CMS, D0 Collaboration, First Combination of Tevatron and LHC Measurements of the Top-quark Mass, 2014.
  • S. Coleman, Fate of the false vacuum: Semiclassical theory, Phys. Rev. D 15 (1977), pp. 2929–2936.
  • C. Callan and S. Coleman, Fate of the false vacuum II: First quantum corrections, Phys. Rev. D 16 (1977), pp. 1762–1768.
  • S. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980), pp. 3305–3315.
  • P. Burda, R. Gregory, and I. Moss, Gravity and the Stability of the Higgs Vacuum, 2015. arXiv:1501.04937
  • M.Y. Khlopov, Primordial black holes, Res. Astron. Astrophys. 10 (2010), pp. 495–528.
  • S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett. 87 (2001), 161602.
  • R. Gregory, Braneworld black holes, Lect. Notes Phys. 769 (2009), pp. 259–298.
  • P. Kanti and E. Winstanley, Hawking radiation from higher-dimensional black holes, Fundam. Theor. Phys. 178 (2015), pp. 229–265.
  • P. Hut and M. Rees, How stable is our vacuum?, Nature 302 (1983), pp. 508–509.
  • C. Burgess, Quantum gravity in everyday life: General relativity as an effective field theory, Living Rev. Rel. 7 (2004), pp. 5–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.