356
Views
7
CrossRef citations to date
0
Altmetric
Articles

Coherent X-ray imaging across length scales

Pages 140-159 | Received 29 Sep 2026, Accepted 17 Nov 2016, Published online: 16 Jan 2017

References

  • Röntgen W. On a new kind of rays. Nature. 1896;53:274–276.
  • Snigirev A, Snigireva I, Kohn V, et al. On the possibilities of X-ray phase contrast imaging by coherent high-energy synchrtron radiation. Rev Sci Inst. 1995;66:5486–5492.
  • Cloetens P, Barrett R, Baruchel J, et al. Phase objects in synchrotron radiation hard X-ray imaging. J Phys D Appl Phys. 1996;29:133–146.
  • Ayyer K, Yefanov OM, Oberthür D, et al. Macromolecular diffractive imaging using imperfect crystals. Nature. 2016;530:202–206.
  • Quiney H. Coherent diffractive imaging using short wavelength light sources. J Mod Opt. 2010;57:1109–1149.
  • Nugent K. Coherent methods in the X-ray sciences. Adv Phys. 2010;59:1–99.
  • Chapman HN, Nugent KA. Coherent lensless X-ray imaging. Nat Photonics. 2010;4:833–839.
  • Nugent K. The measurement of phase through the propagation of intensity: an introduction. Contemp Phys. 2011;52:55–69.
  • Falcone R, Jacobsen C, Kirz J, et al. New directions in X-ray microscopy. Contemp Phys. 2011;52:293–318.
  • Spence JCH, Weierstall U, Chapman HN. X-ray lasers for structural and dynamic biology. Reports Prog Phys. 2012;75:102601.
  • Galler K, Bräutigam K, Große C, et al. Making a big thing of a small cell – recent advances in single cell analysis. Analyst. 2014;139:1237.
  • Miao J, Ishikawa T, Robinson IK, et al. Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science. 2015;348:530–535.
  • Wilkins SW, Nesterets YI, Gureyev TE, et al. On the evolution and relative merits of hard X-ray phase-contrast imaging methods. Philos Trans R Soc A Math Phys Eng Sci. 2014;372:20130021–20130021.
  • Jackson J. Classical electrodynamics. 3rd ed. New York (NY): Wiley; 1999.
  • Paganin D. Coherent X-ray optics. Oxford: Oxford University Press; 2006.
  • Born M, Wolf E. Principles of optics. 7th ed. Cambridge: Cambridge University Press; 1999.
  • Henke B, Gullikson E, Davis J. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 ev, Z = 1-92. Atom Data Nucl Data. 1993;54:181–342.
  • Goodman J. Introduction to fourier optics. New York (NY): McGraw-Hill; 1988.
  • Morgan KS, Siu KKW, Paganin DM. The projection approximation vs. an exact solution for X-ray phase contrast imaging, with a plane wave scattered by a dielectric cylinder. Opt Commun. 2010;283:4601–4608.
  • Wolf E. Introduction to the theory of coherence and polarization of light. Cambridge: Cambridge University Press; 2007.
  • Mandel L, Wolf E. Optical coherence and quantum optics. Cambridge: Cambridge University Press; 1995.
  • Shukla P, Lawrence J, Zhang Y. Understanding laser beam brightness: a review and new prospective in material processing. Opt Laser Technol. 2015;75:40–51.
  • Buzug TM. Computed tomography. Berlin: Springer-Verlag; 2008.
  • Attwood DT, Kim KJ. Spectral brightness and coherent power of radiation from high brightness 1–6 GeV storage rings. Nucl Inst Methods Phys Res A. 1986;246:86–90.
  • Hulbert SL, Weber JM. Flux and brightness calculations for various synchrotron radiation sources. Nucl Inst Methods Phys Res A. 1992;319:25–31.
  • Martin MM, Daresbury SRS. Synchrotron Radiat News. 1988;1:14–18.
  • Suller V, Corlett J, Dykes D, et al. Performance of the Daresbury SRS with an increased brilliance optic. Euro Part Accel Conference. 1988.
  • Munro PRT, Ignatyev K, Speller R, et al. The relationship between wave and geometrical optics models of coded aperture type X-ray phase contrast imaging systems. Opt Express. 2010;18:4103–4117.
  • Flewett S, Quiney HM, Tran CQ, et al. Extracting coherent modes from partially coherent wavefields. Opt Lett. 2009;34:2198–2200.
  • Dreossi D, Abrami A, Arfelli F, et al. The mammography project at the syrmep beamline. Eur J Radiol. 2008;68:S58–S62.
  • Kitchen MJ, Lewis RA, Yagi N, et al. Phase contrast X-ray imaging of mice and rabbit lungs: a comparative study. Br J Radiol. 2005;78:1018–1027.
  • Westneat MW. Tracheal respiration in insects visualized with synchrotron X-ray imaging. Science. 2003;299:558–560.
  • Quai E, Longo R, Zanconati F, et al. First application of computed radiology to mammography with synchrotron radiation. Radiol Med. 2013;118:89–100.
  • Castelli E, Tonutti M, Arfelli F, et al. Mammography with synchrotron radiation: first clinical experience with phase-detection technique. Radiology. 2011;259:684–694.
  • Longo R, Tonutti M, Rigon L, et al. Clinical study in phase-contrast mammography: image-quality analysis. Philos Trans R Soc London A Math Phys Eng Sci. 2014;372:1–8.
  • Lewis RA, Hall CJ, Hufton AP, et al. X-ray refraction effects: application to the imaging of biological tissues. Br J Radiol. 2003;76:301–308.
  • Wirjadi WOMN, Chapman D, Zhong Z, et al. Multiple-image radiography. Phys Med Biol. 2003;48:3875–3895.
  • Pagot E, Cloetens P, Fiedler S, et al. A method to extract quantitative information in analyzer-based X-ray phase contrast imaging. Appl Phys Lett. 2003;82:3421–3423.
  • Patorski K. The self-imaging phenomenon and its applications. Prog Opt. 1989;XXVII:1–108.
  • Weitkamp T, Diaz A, David C, et al. X-ray phase imaging with a grating interferometer. Opt Express. 2005;13:6296–6304.
  • Momose A, Yashiro W, Takeda Y, et al. Phase tomography by X-ray talbot interferometry for biological imaging. Jpn J Appl Phys. 2006;45:5254–5262.
  • Munro PRT, Ignatyev K, Speller R, et al. Phase and absorption retrieval using incoherent X-ray sources. Proc Natl Acad Sci USA. 2012;109:13922–13927.
  • Munro PRT, Hagen C, Szafraniec M, et al. A simplified approach to quantitative coded aperture X-ray phase imaging. Opt Express. 2013;21:11187–11201.
  • Diemoz PC, Vittoria FA, Hagen CK, et al. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup. J Synchrotron Radiat. 2015;22:1072–1077.
  • Munro PRT, Rigon L, Ignatyev K, et al. A quantitative, non-interferometric X-ray phase contrast imaging technique. Opt Express. 2013;21:647–661.
  • Snigirev A, Kohn V, Snigireva I, et al. A compound refractive lens for focusing high-energy X-rays. Nature. 1996;384:49–51.
  • Schroer C, Lengeler B. Focusing Hard X-rays to nanometer dimensions by adiabatically focusing lenses. Phys Rev Lett. 2005;94:054802.
  • Baez AV. Fresnel zone plate for optical image formation using extreme ultraviolet and soft x radiation. J Opt Soc Am. 1961;51:405–412.
  • Niemann B, Rudolph D, Schmahl G. X-ray microscopy with synchrotron radiation. Appl Opt. 1976;15:1883–1884.
  • Kenney J, Kirz J, Rarback H, et al. Soft X-ray microscopy at the NSLS. Nucl Instrum Methods Phys Res. 1984;222:37–41.
  • Zernike F. How I discovered phase contrast. Science. 1955;121:345–349.
  • Schmahl G, Rudolph D, Schneider G, et al. Phase contrast X-ray microscopy studies. Optik. 1994;97:181–182.
  • Stampanoni M, Mokso R, Marone F, et al. Phase-contrast tomography at the nanoscale using hard X-rays. Phys Rev B. 2010;81:1–4.
  • Vartiainen I, Warmer M, Goeries D, et al. Towards tender X-rays with Zernike phase-contrast imaging of biological samples at 50 nm resolution. J Synchrotron Radiat. 2014;21:790–794.
  • Taiwo OO, Finegan DP, Gelb J, et al. The use of contrast enhancement techniques in X-ray imaging of lithium ion battery electrodes. Chem Eng Sci. 2016;154:27–33.
  • Gerchberg RW, Saxton WO. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik. 1972;35:237–246.
  • Fienup JR. Phase retrieval algorithms: a personal tour [Invited]. Appl Opt. 2012;52:45–56.
  • Fienup JR. Phase retrieval algorithms: a comparison. Appl Opt. 1982;21:2758–2769.
  • Fright W, Bates R. Fourier phase problems are uniquely solvable in more than one dimension. III: Computational examples for two dimensions. Optik. 1982;62:219–230.
  • Garden L, Bates R. Fourier phase problems are uniquely solvable in more than one dimension. II: One-dimensional considerations. Optik. 1982;62:131–142.
  • Bates R. Fourier phase problems are uniquely solvable in more than one dimension. I: Underlying theory. Optik. 1981;61:247–262.
  • Miao J, Sayre D, Chapman HN. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J Opt Soc Am A. 1997;15:1662.
  • Miao J, Charalambous P, Kirz J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature. 1999;400:342–344.
  • Miao J, Hodgson KO, Sayre D. An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images. Proc Natl Acad Sci USA. 2001;98:6641–6645.
  • Chapman HN, Barty A, Marchesini S, et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J Opt Soc Am A. 2006;23:1179.
  • Abbey B, Nugent KA, Williams GJ, et al. Keyhole coherent diffractive imaging. Nat Phys. 2008;4:394–398.
  • Thibault P, Dierolf M, Menzel A, et al. High-resolution scanning X-ray diffraction microscopy. Science. 2008;321:379–382.
  • Rodenburg JM, Bates RHT. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Philos Trans R Soc A Math Phys Eng Sci. 1992;339:521–553.
  • Rodenburg JM, Hurst AC, Cullis AG, et al. Hard-X-ray lensless imaging of extended objects. Phys Rev Lett. 2007;98:034801.
  • Thibault P, Guizar-Sicairos M. Maximum-likelihood refinement for coherent diffractive imaging. New J Phys. 2012;14.
  • Howells MR, Beetz T, Chapman HN, et al. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J Electron Spectros Relat Phenomena. 2009;170:4–12.
  • Neutze R, Wouts R, van der Spoel D, et al. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature. 2000;406:752–757.
  • Ashcroft NW, Mermin ND. Solid state physics. New York (NY): Saunders College Publishing; 1976.
  • Hammond C. The basics of crystallography and diffraction. Oxford: Oxford University Press; 2001.
  • Kirian RA, Wang X, Weierstall U, et al. Femtosecond protein nanocrystallography data analysis methods. Opt Express. 2010;18:5713–5723.
  • Emma P, Akre R, Arthur J, et al. First lasing and operation of an Ångstrom-wavelength free-electron laser. Nat Photonics. 2010;4:641–647.
  • Renger G. mechanism of light induced water splitting in photosystem II of oxygen evolving photosynthetic organisms. Biochim Biophys Acta – Bioenerg. 2012;1817:1164–1176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.