1,286
Views
91
CrossRef citations to date
0
Altmetric
Review articles

Quantum thermal absorption machines: refrigerators, engines and clocks

ORCID Icon
Pages 164-187 | Received 04 Jan 2019, Accepted 05 Jun 2019, Published online: 15 Jul 2019

References

  • Vinjanampathy S, Anders J. Quantum thermodynamics. Contemp Phys. 2016;57:545.
  • Binder F, Correa LA, Gogolin C, et al., editors. Thermodynamics in the quantum regime. Berlin, Heidelberg: Springer International; 2019.
  • Benenti G, Casati G, Saito K, et al. Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys Rep. 2017;694:1.
  • Seah S, Nimmrichter S, Roulet A, et al. Quantum rotor engines. arXiv:1804.11023 [quant-ph]; 2018a.
  • Parrondo JMR, Horowitz JM, Sagawa T. Thermodynamics of information. Nat Phys. 2015;11:131.
  • Goold J, Huber M, Riera A, et al. The role of quantum information in thermodynamics—a topical review. J Phys A: Math Theor. 2016;49:143001.
  • Kosloff R. Quantum thermodynamics: a dynamical viewpoint. Entropy. 2013;15:2100.
  • Kosloff R, Levy A. Quantum heat engines and refrigerators: continuous devices. Annu Rev Phys Chem. 2014;65:365.
  • Gemmer J, Michel M, Mahler G. Quantum thermodynamics. Berlin Heidelberg: Springer; 2004.
  • Nielsen MA, Chuang IL. Quantum computation and quantum information. Cambridge: Cambridge University Press; 2009.
  • Gorini V, Kossakowski A, Sudarshan ECG. Completely positive dynamical semigroups of N-level systems. J Math Phys. 1976;17:821.
  • Lindblad G. On the generators of quantum dynamical semigroups. Commun Math Phys. 1976;48:119.
  • Breuer H-P, Petruccione F. The theory of open quantum systems. Oxford: Oxford University Press; 2002.
  • Rivas Á, Huelga SF. Open quantum systems. Berlin Heidelberg: Springer; 2012.
  • Schaller G, Brandes T. Preservation of positivity by dynamical coarse graining. Phys Rev A. 2008;78:022106.
  • Kiršanskas G, Franckié M, Wacker A. Phenomenological position and energy resolving Lindblad approach to quantum kinetics. Phys Rev B. 2018;97:035432.
  • Wichterich H, Henrich MJ, Breuer H-P, et al. Modeling heat transport through completely positive maps. Phys Rev E. 2007;76:031115.
  • Scala M, Militello B, Messina A, et al. Cavity losses for the dissipative Jaynes–Cummings Hamiltonian beyond rotating wave approximation. J Phys A: Math Theor. 2007;40:14527.
  • Rivas Á, Plato ADK, Huelga SF, et al. Markovian master equations: a critical study. New J Phys. 2010;12:113032.
  • Levy A, Kosloff R. The local approach to quantum transport may violate the second law of thermodynamics. Europhys Lett. 2014;107:20004.
  • Trushechkin AS, Volovich IV. Perturbative treatment of inter-site couplings in the local description of open quantum networks. Europhys Lett. 2016;113:30005.
  • Stockburger JT, Motz T. Thermodynamic deficiencies of some simple Lindblad operators. Fortschr Phys. 2016;65:1600067.
  • Eastham PR, Kirton P, Cammack HM, et al. Bath-induced coherence and the secular approximation. Phys Rev A. 2016;94:012110.
  • Purkayastha A, Dhar A, Kulkarni M. Out-of-equilibrium open quantum systems: a comparison of approximate quantum master equation approaches with exact results. Phys Rev A. 2016;93:062114.
  • Deçordi GL, Vidiella-Barranco A. Two coupled qubits interacting with a thermal bath: a comparative study of different models. Opt Commun. 2017;387:366.
  • Hofer PP, Perarnau-Llobet M, Miranda LDM, et al. Markovian master equations for quantum thermal machines: local versus global approach. New J Phys. 2017;19:123037.
  • González JO, Correa LA, Nocerino G, et al. Testing the validity of the ‘Local’ and ‘Global’ GKLS master equations on an exactly solvable model. Open Sys Info Dyn. 2017a;24:1740010.
  • Naseem MT, Xuereb A, Müstecaplıoğlu OE. Thermodynamic consistency of the optomechanical master equation. Phys Rev A. 2018;98:052123.
  • Salmilehto J, Solinas P, Möttönen M. Conservation law of operator current in open quantum systems. Phys Rev A. 2012;85:032110.
  • Mitchison MT, Plenio MB. Non-additive dissipation in open quantum networks out of equilibrium. New J Phys. 2018;20:033005.
  • Barra F. The thermodynamic cost of driving quantum systems by their boundaries. Sci Rep. 2015;5:14873.
  • Strasberg P, Schaller G, Brandes T, et al. Quantum and information thermodynamics: a unifying framework based on repeated interactions. Phys Rev X. 2017;7:021003.
  • Chiara GD, Landi G, Hewgill A, et al. Reconciliation of quantum local master equations with thermodynamics. New J Phys. 2018;20:113024.
  • Chan C-K, Lin G-D, Yelin SF, et al. Quantum interference between independent reservoirs in open quantum systems. Phys Rev A. 2014;89:042117.
  • Giusteri GG, Recrosi F, Schaller G, et al. Interplay of different environments in open quantum systems: breakdown of the additive approximation. Phys Rev E. 2017;96:012113.
  • Kołodyński J, Brask JB, Perarnau-Llobet M, et al. Adding dynamical generators in quantum master equations. Phys Rev A. 2018;97:062124.
  • Maguire H, Iles-Smith J, Nazir A. Environmental non-additivity and Franck-Condon physics in non-equilibrium quantum systems. arXiv:1812.04502 [quant-ph]; 2018.
  • Scovil HED, Schulz-DuBois EO. Three-level masers as heat engines. Phys Rev Lett. 1959;2:262.
  • Geusic JE, Schulz-DuBios EO, Scovil HED. Quantum equivalent of the carnot cycle. Phys Rev. 1967;156:343.
  • Palao JP, Kosloff R, Gordon JM. Quantum thermodynamic cooling cycle. Phys Rev E. 2001;64:056130.
  • Linden N, Popescu S, Skrzypczyk P. How small can thermal machines be? The smallest possible refrigerator. Phys Rev Lett. 2010;105:130401.
  • Levy A, Kosloff R. Quantum absorption refrigerator. Phys Rev Lett. 2012;108:070604.
  • Martinez EA, Paz JP. Dynamics and thermodynamics of linear quantum open systems. Phys Rev Lett. 2013;110:130406.
  • Brunner N, Linden N, Popescu S, et al. Virtual qubits, virtual temperatures, and the foundations of thermodynamics. Phys Rev E. 2012;85:051117.
  • Seah S, Nimmrichter S, Scarani V. Refrigeration beyond weak internal coupling. Phys Rev E. 2018b;98:012131.
  • Barra F, Lledó C. The smallest absorption refrigerator: the thermodynamics of a system with quantum local detailed balance. Euro Phys J Spec Top. 2018;227:231.
  • Skrzypczyk P, Brunner N, Linden N, et al. The smallest refrigerators can reach maximal efficiency. J Phys A: Math Theor. 2011;44:492002.
  • Correa LA, Palao JP, Adesso G, et al. Performance bound for quantum absorption refrigerators. Phys Rev E. 2013;87:042131.
  • Hofer PP, Perarnau-Llobet M, Brask JB, et al. Autonomous quantum refrigerator in a circuit QED architecture based on a Josephson junction. Phys Rev B. 2016;94:235420.
  • Correa LA, Palao JP, Alonso D. Internal dissipation and heat leaks in quantum thermodynamic cycles. Phys Rev E. 2015;92:032136.
  • Mitchison MT, Woods MP, Prior J, et al. Coherence-assisted single-shot cooling by quantum absorption refrigerators. New J Phys. 2015;17:115013.
  • Nakpathomkun N, Xu HQ, Linke H. Thermoelectric efficiency at maximum power in low-dimensional systems. Phys Rev B. 2010;82:235428.
  • Josefsson M, Svilans A, Burke AM, et al. A quantum-dot heat engine operating close to the thermodynamic efficiency limits. Nat Nanotechnol. 2018;13:920.
  • Correa LA, Palao JP, Alonso D, et al. Quantum-enhanced absorption refrigerators. Sci Rep. 2014a;4:3949.
  • Correa LA, Palao JP, Adesso G, et al. Optimal performance of endoreversible quantum refrigerators. Phys Rev E. 2014b;90:062124.
  • Levy A, Alicki R, Kosloff R. Quantum refrigerators and the third law of thermodynamics. Phys Rev E. 2012;85:061126.
  • Silva R, Skrzypczyk P, Brunner N. Small quantum absorption refrigerator with reversed couplings. Phys Rev E. 2015;92:012136.
  • Mu A, Agarwalla BK, Schaller G, et al. Qubit absorption refrigerator at strong coupling. New J Phys. 2017;19:123034.
  • Silva R, Manzano G, Skrzypczyk P, et al. Performance of autonomous quantum thermal machines: Hilbert space dimension as a thermodynamical resource. Phys Rev E. 2016;94:032120.
  • Correa LA. Multistage quantum absorption heat pumps. Phys Rev E. 2014;89:042128.
  • González JO, Palao JP, Alonso D. Relation between topology and heat currents in multilevel absorption machines. New J Phys. 2017b;19:113037.
  • Clivaz F, Silva R, Haack G, et al. Unifying paradigms of quantum refrigeration: fundamental limits of cooling and associated work costs. arXiv:1710.11624 [quant-ph]; 2017.
  • Brunner N, Huber M, Linden N, et al. Entanglement enhances cooling in microscopic quantum refrigerators. Phys Rev E. 2014;89:032115.
  • Holubec V, Novotný T. Effects of noise-induced coherence on the performance of quantum absorption refrigerators. J Low Temp Phys. 2018;192:147.
  • Du J-Y, Zhang F-L. Nonequilibrium quantum absorption refrigerator. New J Phys. 2018;20:063005.
  • Kilgour M, Segal D. Coherence and decoherence in quantum absorption refrigerators. Phys Rev E. 2018;98:012117.
  • Huelga SF, Plenio MB. Vibrations, quanta and biology. Contemp Phys. 2013;54:181.
  • Man Z-X, Xia Y-J. Smallest quantum thermal machine: the effect of strong coupling and distributed thermal tasks. Phys Rev E. 2017;96:012122.
  • Santos JP, Céleri LC, Landi GT, et al. The role of quantum coherence in non-equilibrium entropy production. Quantum Inf. 2019;5:23.
  • Francica G, Goold J, Plastina F. Role of coherence in the nonequilibrium thermodynamics of quantum systems. Phys Rev E. 2019;99:042105.
  • Roulet A. Revealing the work cost of generalized thermal baths. Entropy. 2018;20:973.
  • Brask JB, Brunner N. Small quantum absorption refrigerator in the transient regime: time scales, enhanced cooling, and entanglement. Phys Rev E. 2015;92:062101.
  • Nimmrichter S, Dai J, Roulet A, et al. Quantum and classical dynamics of a three-mode absorption refrigerator. Quantum. 2017;1:37.
  • Uzdin R, Levy A, Kosloff R. Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys Rev X. 2015;5:031044.
  • González JO, Palao JP, Alonso D, et al. Classical emulation of quantum-coherent thermal machines. Phys Rev E. 2019;99:062102.
  • Chen Y-X, Li S-W. Quantum refrigerator driven by current noise. Europhys Lett. 2012;97:40003.
  • Mari A, Eisert J. Cooling by heating: very hot thermal light can significantly cool quantum systems. Phys Rev Lett. 2012;108:120602.
  • Venturelli D, Fazio R, Giovannetti V. Minimal self-contained quantum refrigeration machine based on four quantum dots. Phys Rev Lett. 2013;110:256801.
  • Erdman PA, Bhandari B, Fazio R, et al. Absorption refrigerators based on Coulomb-coupled single-electron systems. Phys Rev B. 2018;98:045433.
  • Mitchison MT, Huber M, Prior J, et al. Realising a quantum absorption refrigerator with an atom-cavity system. Quantum Sci Technol. 2016;1:015001.
  • Bužek V, Drobný G, Kim MS, et al. Cavity QED with cold trapped ions. Phys Rev A. 1997;56:2352.
  • Leibfried D, Blatt R, Monroe C, et al. Quantum dynamics of single trapped ions. Rev Mod Phys. 2003;75:281.
  • Mitchison MT, Potts PP. Physical implementations of quantum absorption refrigerators. arXiv:1803.06133 [quant-ph]; 2018.
  • Maslennikov G, Ding S, Hablützel R, et al. Quantum absorption refrigerator with trapped ions. Nat Commun. 2019;10:202.
  • Marquet C, Schmidt-Kaler F, James DFV. Phonon-phonon interactions due to non-linear effects in a linear ion trap. Appl Phys B: Lasers Opt. 2003;76:199.
  • Polkovnikov A, Sengupta K, Silva A, et al. Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev Mod Phys. 2011;83:863.
  • Eisert J, Friesdorf M, Gogolin C. Quantum many-body systems out of equilibrium. Nat Phys. 2015;11:124.
  • Gogolin C, Eisert J. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep Prog Phys. 2016;79:056001.
  • Allahverdyan AE, Balian R, Nieuwenhuizen TM. Maximal work extraction from finite quantum systems. Europhys Lett. 2004;67:565.
  • Binder F, Vinjanampathy S, Modi K, et al. Quantum thermodynamics of general quantum processes. Phys Rev E. 2015;91:032119.
  • Pusz W, Woronowicz SL. Passive states and KMS states for general quantum systems. Commun Math Phys. 1978;58:273.
  • Lenard A. Thermodynamical proof of the Gibbs formula for elementary quantum systems. J Stat Phys. 1978;19:575.
  • Skrzypczyk P, Silva R, Brunner N. Passivity, complete passivity, and virtual temperatures. Phys Rev E. 2015;91:052133.
  • Allahverdyan AE, Nieuwenhuizen TM. A mathematical theorem as the basis for the second law: Thomson's formulation applied to equilibrium. Physica A. 2002;305:542.
  • Gelbwaser-Klimovsky D, Kurizki G. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Phys Rev E. 2014;90:022102.
  • Gelbwaser-Klimovsky D, Kurizki G. Work extraction from heat-powered quantized optomechanical setups. Sci Rep. 2015;5:7809.
  • Seah S, Nimmrichter S, Scarani V. Work production of quantum rotor engines. New J Phys. 2018c;20:043045.
  • Lörch N, Bruder C, Brunner N, et al. Optimal work extraction from quantum states by photo-assisted Cooper pair tunneling. Quantum Sci Technol. 2018;3:035014.
  • Boukobza E, Tannor DJ. Thermodynamics of bipartite systems: application to light-matter interactions. Phys Rev A. 2006a;74:063823.
  • Weimer H, Henrich MJ, Rempp F, et al. Local effective dynamics of quantum systems: a generalized approach to work and heat. Europhys Lett. 2008;83:30008.
  • Skrzypczyk P, Short AJ, Popescu S. Work extraction and thermodynamics for individual quantum systems. Nat Commun. 2014;5:4185.
  • Mari A, Farace A, Giovannetti V. Quantum optomechanical piston engines powered by heat. J Phys B: At Mol Opt Phys. 2015;48:175501.
  • Talkner P, Lutz E, Hänggi P. Fluctuation theorems: work is not an observable. Phys Rev E. 2007;75:050102.
  • Dahlsten OCO, Renner R, Rieper E, et al. Inadequacy of von Neumann entropy for characterizing extractable work. New J Phys. 2011;13:053015.
  • Horodecki M, Oppenheim J. Fundamental limitations for quantum and nanoscale thermodynamics. Nat Commun. 2013;4:2059.
  • Åberg J. Truly work-like work extraction via a single-shot analysis. Nat Commun. 2013;4:1925.
  • Egloff D, Dahlsten OCO, Renner R, et al. A measure of majorization emerging from single-shot statistical mechanics. New J Phys. 2015;17:073001.
  • Halpern NY, Garner AJP, Dahlsten OCO, et al. Introducing one-shot work into fluctuation relations. New J Phys. 2015;17:095003.
  • Guarnieri G, Ng NHY, Modi K, et al. Quantum work statistics and resource theories: bridging the gap through Rényi divergences. Phys Rev E. 2019a;99:050101.
  • Åberg J. Fully quantum fluctuation theorems. Phys Rev X. 2018;8:011019.
  • Boukobza E, Tannor DJ. Thermodynamic analysis of quantum light amplification. Phys Rev A. 2006b;74:063822.
  • Ansari MH. Entropy production in a photovoltaic cell. Phys Rev B. 2017;95:174302.
  • Perl Y, Band YB, Boukobza E. Thermodynamic output of single-atom quantum optical amplifiers and their phase-space fingerprint. Phys Rev A. 2017;95:053823.
  • Yuge T, Yamaguchi M, Ogawa T. Decomposition of radiation energy into work and heat. Phys Rev E. 2017;95:022119.
  • Youssef M, Mahler G, Obada A-SF. Quantum optical thermodynamic machines: lasing as relaxation. Phys Rev E. 2009;80:061129.
  • Youssef M, Mahler G, Obada A-SF. Quantum heat engine: a fully quantized model. Physica E. 2010;42:454.
  • Levy A, Diósi L, Kosloff R. Quantum flywheel. Phys Rev A. 2016;93:052119.
  • Erker P, Mitchison MT, Silva R, et al. Autonomous quantum clocks: does thermodynamics limit our ability to measure time? Phys Rev X. 2017;7:031022.
  • van Kampen NG. Stochastic processes in physics and chemistry. Oxford: Elsevier LTD; 2007.
  • von Lindenfels D, Gräb O, Schmiegelow CT, et al. A spin heat engine coupled to a harmonic-oscillator flywheel. arXiv:1808.02390 [quant-ph]; 2018.
  • Horne NV, Yum D, Dutta T, et al. Single atom energy-conversion device with a quantum load. arXiv:1812.01303 [quant-ph]; 2018.
  • Malabarba ASL, Short AJ, Kammerlander P. Clock-driven quantum thermal engines. New J Phys. 2015;17:045027.
  • Frenzel MF, Jennings D, Rudolph T. Quasi-autonomous quantum thermal machines and quantum to classical energy flow. New J Phys. 2016;18:023037.
  • Woods MP, Silva R, Oppenheim J. Autonomous quantum machines and finite-sized clocks. J Ann Henri Poincaré. 2019;20:125.
  • Tonner F, Mahler G. Autonomous quantum thermodynamic machines. Phys Rev E. 2005;72:066118.
  • Gelbwaser-Klimovsky D, Alicki R, Kurizki G. Work and energy gain of heat-pumped quantized amplifiers. Europhys Lett. 2013;103:60005.
  • Roulet A, Nimmrichter S, Arrazola JM, et al. Autonomous rotor heat engine. Phys Rev E. 2017;95:062131.
  • Roulet A, Nimmrichter S, Taylor JM. An autonomous single-piston engine with a quantum rotor. Quantum Sci Technol. 2018;3:035008.
  • Salecker H, Wigner EP. Quantum limitations of the measurement of space-time distances. Phys Rev. 1958;109:571.
  • Peres A. Measurement of time by quantum clocks. Am J Phys. 1980;48:552.
  • Baz' AI. Lifetime of intermediate states. Sov J Nucl Phys. 1967;4:182.
  • Hauge EH, Støvneng JA. Tunneling times: a critical review. Rev Mod Phys. 1989;61:917.
  • Mandelstam L, Tamm I. In: Selected papers. Berlin Heidelberg: Springer; 1991. p. 115–123.
  • Margolus N, Levitin LB. The maximum speed of dynamical evolution. Physica D. 1998;120:188.
  • Lieb EH, Robinson DW. The finite group velocity of quantum spin systems. Commun Math Phys. 1972;28:251.
  • Ranković S, Liang Y-C, Renner R. Quantum clocks and their synchronisation - the Alternate Ticks Game. arXiv:1506.01373 [quant-ph]; 2015.
  • Sels D, Wouters M. The thermodynamics of time. arXiv:1501.05567 [quant-ph]; 2015.
  • Janzing D, Beth T. Synchronizing quantum clocks with classical one-way communication: Bounds on the generated entropy. arXiv:quant-ph/0306023; 2003.
  • Stupar S, Klumpp C, Renner R, et al. Performance of stochastic clocks in the Alternate Ticks Game. arXiv:1806.08812 [quant-ph]; 2018.
  • Roldán E, Neri I, Dörpinghaus M, et al. Decision making in the arrow of time. Phys Rev Lett. 2015;115:250602.
  • Barato AC, Seifert U. Cost and precision of Brownian clocks. Phys Rev X. 2016;6:041053.
  • Barato AC, Seifert U. Thermodynamic uncertainty relation for biomolecular processes. Phys Rev Lett. 2015;114:158101.
  • Gingrich TR, Horowitz JM, Perunov N, et al. Dissipation bounds all steady-state current fluctuations. Phys Rev Lett. 2016;116:120601.
  • Pietzonka P, Barato AC, Seifert U. Universal bounds on current fluctuations. Phys Rev E. 2016;93:052145.
  • Pietzonka P, Ritort F, Seifert U. Finite-time generalization of the thermodynamic uncertainty relation. Phys Rev E. 2017;96:012101.
  • Horowitz JM, Gingrich TR. Proof of the finite-time thermodynamic uncertainty relation for steady-state currents. Phys Rev E. 2017;96:020103.
  • Macieszczak K, Brandner K, Garrahan JP. Unified thermodynamic uncertainty relations in linear response. Phys Rev Lett. 2018;121:130601.
  • Guarnieri G, Landi GT, Clark SR, et al. Thermodynamics of precision in quantum non equilibrium steady states. arXiv:1901.10428 [quant-ph]; 2019b.
  • Brandner K, Hanazato T, Saito K. Thermodynamic bounds on precision in ballistic multiterminal transport. Phys Rev Lett. 2018;120:090601.
  • Ptaszyński K. Coherence-enhanced constancy of a quantum thermoelectric generator. Phys Rev B. 2018;98:085425.
  • Agarwalla BK, Segal D. Assessing the validity of the thermodynamic uncertainty relation in quantum systems. Phys Rev B. 2018;98:155438.
  • Jacobs K. Second law of thermodynamics and quantum feedback control: Maxwell's demon with weak measurements. Phys Rev A. 2009;80:012322.
  • Jacobs K. Quantum measurement and the first law of thermodynamics: the energy cost of measurement is the work value of the acquired information. Phys Rev E. 2012;86:040106.
  • Abdelkhalek K, Nakata Y, Reeb D. Fundamental energy cost for quantum measurement. arXiv:1609.06981 [quant-ph]; 2016.
  • Guryanova Y, Friis N, Huber M. Ideal projective measurements have infinite resource costs. arXiv:1805.11899 [quant-ph]; 2018.
  • Guryanova Y, Popescu S, Short AJ, et al. Thermodynamics of quantum systems with multiple conserved quantities. Nat Commun. 2016;7:12049.
  • Halpern NY, Faist P, Oppenheim J, et al. Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges. Nat Commun. 2016;7:12051.
  • Woods MP, Silva R, Pütz G, et al. Quantum clocks are more accurate than classical ones. arXiv:1806.00491 [quant-ph]; 2018b.
  • Brandner K, Saito K, Seifert U. Thermodynamics of micro- and nano-systems driven by periodic temperature variations. Phys Rev X. 2015;5:031019.
  • Shiraishi N, Saito K, Tasaki H. Universal trade-off relation between power and efficiency for heat engines. Phys Rev Lett. 2016;117:190601.
  • Pietzonka P, Seifert U. Universal trade-off between power, efficiency, and constancy in steady-state heat engines. Phys Rev Lett. 2018;120:190602.
  • Holubec V, Ryabov A. Cycling tames power fluctuations near optimum efficiency. Phys Rev Lett. 2018;121:120601.
  • Segal D. Current fluctuations in quantum absorption refrigerators. Phys Rev E. 2018;97:052145.
  • Li S-W, Kim MB, Agarwal GS, et al. Quantum statistics of a single-atom Scovil–Schulz-DuBois heat engine. Phys Rev A. 2017;96:063806.
  • Gelbwaser-Klimovsky D, Aspuru-Guzik A. Strongly coupled quantum heat machines. J Phys Chem Lett. 2015;6:3477.
  • Strasberg P, Schaller G, Lambert N, et al. Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping. New J Phys. 2016;18:073007.
  • Xu D, Wang C, Zhao Y, et al. Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective. New J Phys. 2016;18:023003.
  • Newman D, Mintert F, Nazir A. Performance of a quantum heat engine at strong reservoir coupling. Phys Rev E. 2017;95:032139.
  • Perarnau-Llobet M, Wilming H, Riera A, et al. Strong coupling corrections in quantum thermodynamics. Phys Rev Lett. 2018;120:120602.
  • Jang S, Cheng Y-C, Reichman DR, et al. Theory of coherent resonance energy transfer. J Chem Phys. 2008;129:101104.
  • Nazir A. Correlation-dependent coherent to incoherent transitions in resonant energy transfer dynamics. Phys Rev Lett. 2009;103:146404.
  • Prior J, Chin AW, Huelga SF, et al. Efficient simulation of strong system-environment interactions. Phys Rev Lett. 2010;105:050404.
  • Iles-Smith J, Lambert N, Nazir A. Environmental dynamics, correlations, and the emergence of noncanonical equilibrium states in open quantum systems. Phys Rev A. 2014;90:032114.
  • Tamascelli D, Smirne A, Huelga SF, et al. Nonperturbative treatment of non-Markovian dynamics of open quantum systems. Phys Rev Lett. 2018;120:030402.
  • Strathearn A, Kirton P, Kilda D, et al. Efficient non-Markovian quantum dynamics using time-evolving matrix product operators. Nat Commun. 2018;9:3322.
  • Brask JB, Haack G, Brunner N, et al. Autonomous quantum thermal machine for generating steady-state entanglement. New J Phys. 2015;17:113029.
  • Tavakoli A, Haack G, Huber M, et al. Heralded generation of maximal entanglement in any dimension via incoherent coupling to thermal baths. Quantum. 2018;2:73.
  • Guarnieri G, Kolář M, Filip R. Steady-state coherences by composite system-bath interactions. Phys Rev Lett. 2018;121:070401.
  • Manzano G, Silva R, Parrondo JMR. Autonomous thermal machine for amplification and control of energetic coherence. Phys Rev E. 2019;99:042135.
  • Chitambar E, Gour G. Quantum resource theories. Rev Mod Phys. 2019;91:025001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.