338
Views
4
CrossRef citations to date
0
Altmetric
Articles

Hot and cold: defining and measuring temperature

Pages 256-276 | Received 15 Feb 2021, Accepted 22 Feb 2021, Published online: 30 Mar 2021

References

  • Karkanas P, Shahack-Gross R, Ayalon A, et al. Evidence for habitual use of fire at the end of the lower paleolithic: site-formation processes at qesem cave, Israel. J Hum Evol. 2007;53:197–212.
  • House A, Bamford MK, Chikumbirike J. Charcoal from holocene deposits at wonderwerk cave, South Africa: A source of palaeoclimate information. Quat Int. 2020. https://doi.org/10.1016/j.quaint.2020.10.039
  • Newell DB, Cabiati F, Fischer J, et al. The CODATA 2017 values of h, e, k, and NA for the revision of the SI. Metrologia; 2018(55):L13–L16.
  • Stock M, Davis R, de Mirandes E, et al. The revision of the SI-the result of three decades of progress in metrology. Metrologia. 2019;56:022001.
  • McCaskey JP. History of ‘temperature’: maturation of a measurement concept. Ann Sci. 2020;77:399–444. https://doi.org/10.1080/00033790.2020.1817980
  • Wright WF. Early evolution of the thermometer and application to clinical medicine. J Therm Bio. 2016;56:18–30.
  • Chang H. Inventing temperature: measurement and scientific progress. Oxford: Oxford University Press; 2004.
  • Sherry D. Thermoscopes, thermometers, and the foundations of measurement. Stud Hist Phil Sci A. 2011;42:509–524.
  • Middleton WEK. A history of the thermometer and its use in meteorology. Baltimore: Johns Hopkins University Press; 1966.
  • Taylor FS. The origin of the thermometer. Ann Sci. 1942;5:129–156.
  • Hand DJ. Measurement theory and practice: The world through quantification. London: Arnold; 2004.
  • Black J. Lectures on the elements of chemistry: delivered in the University of Edinburgh Vol. 1. London: Mathew Carey; 1807.
  • Carnot S. Reflections on the motive power of fire, and on machines fitted to develop that power. Paris: Bachelier; 1924; [Trans. E. Mendoza; Mineola: Dover; 1988].
  • Thomson W. On the dynamical Theory of Heat, part V, thermo-electric currents. Earth Env Sci Trans R Soc Edinburgh. 1857;21:123–171.
  • Clausius R. The mechanical theory of heat. WR Browne, translator. London: Macmillan and Co; 1879.
  • Maxwell JC. Theory of Heat, new ed. London: Longmans Green and Co; 1902.
  • Boltzmann L. Lectures on gas theory. SR Brush, translator. New York: Dover; 1964.
  • Planck M. Über eine verbesserung der wienschen spektralgleichung. Verh Dtsch Phys Ges. 1900;2:202–204. 1900. [Ter Haar D. The Old Quantum Theory: The Commonwealth and International Library: Selected Readings in Physics. Elsevier; 2016].
  • Einstein A. Investigations on the theory of Brownian movement. New York: Dover publications; 1956.
  • Perrin JA. Mouvement brownien et réalité moléculaire. Ann Chem Phys. 1909 8 Sept. [Brownian Movement and the reality of molecules. F Soddy. London: Taylor and Francis; 1910].
  • Caratheodory C. Untersuchungen über die grundlagen der thermodynamik math. Ann. 1909;67:355–386.
  • Chandrasekhar S. An Introduction to the study of stellar structure. New York: Dover; 1958.
  • Chapuis P. Notes on Ga thermometry. Proc Phys Soc London. 1899;17:355–368.
  • Callendar HL. On a practical thermometric standard. Phil Mag. 1899;48:519–547.
  • Quinn TJ. Temperature 2nd Ed. London: Academic Press; 1990.
  • Quinn TJ. A short history of temperature scales. PTB Mitt. 2007;117:243–250.
  • Stevens SS. On the theory of scales of measurement. Science. 1946;103:677–680.
  • White DR. The meaning of measurement in metrology. Accred Qual Ass. 2011;16:31–41.
  • Bridgeman PW. The logic of modern physics. New York: MacMillan; 1927.
  • Campbell NR. Foundations of science: The philosophy of theory and experiment. New York: Dover; 1957.
  • BIPM [Internet] Paris:BIPM;2008. Guide to the expression of uncertainty in measurement JCGM 100:2008. Available from https://www.bipm.org/en/publications/guides/gum.html
  • Kirkham H, White DR. Reactive power and GIC: The problems of an unrecognized operationalist measurement). Proc 2018 IEEE 9th International workshop on applied measurements for power systems (AMPS); IEEE. p. 1–6.
  • BIPM [Internet] Paris: BIPM;2019. Mise en pratique for the definition of the kelvin. Available from https://www.bipm.org/en/publications/mises-en-pratique/
  • Berry KH. NPL-75: a low temperature gas thermometry scale from 2.6 K to 27.1 K. Metrologia. 1979;15:89–115.
  • Steur PPM, Durieux M. Constant-volume gas thermometry between 4 and 100 K. Metrologia. 1986;23:1–18.
  • Kemp RC, Kemp WRG, Besley LM. A determination of thermodynamic temperatures and measurements of the second virial coefficient of 4He between 13.81 and 287 K using a constant-volume gas thermometer. Metrologia. 1986;23:61–86.
  • Astrov DN, Beliansky LB, Dedikov YA, et al. Precision gas thermometry between 2.5 and 308 K. Metrologia. 1989;26:151–166.
  • Moldover MR, Gavioso RM, Mehl JB, et al. Acoustic gas thermometry. Metrologia. 2014;51:R1–R19.
  • de Podesta M, Underwood R, Sutton G, et al. A low-uncertainty measurement of the Boltzmann constant. Metrologia. 2013;50:354–376.
  • Pitre L, Sparasci F, Risegari L, et al. New measurement of the Boltzmann constant k by acoustic thermometry of helium-4 gas. Metrologia. 2017;54:856–873.
  • Feng XJ, Zhang JT, Lin H, et al. Determination of the Boltzmann constant with cylindrical acoustic gas thermometry: new and previous results combined. Metrologia. 2017;54:748–762.
  • Zandt T, Fellmuth B, Gaiser C, et al. Dielectric-Constant Gas-thermometry measuring system for the determination of the Boltzmann constant at PTB. Int. J. Thermophys. 2010;31:1371–1385.
  • Gaiser C, Zandt T, Fellmuth B. Dielectric-constant gas thermometry. Metrologia. 2015;52:S217–S226.
  • Gaiser C, Fellmuth B, Haft N, et al. Final determination of the Boltzmann constant by dielectric-constant gas thermometry. Metrologia. 2017;54:280–289.
  • Rourke PMC, Gaiser C, Gao B, et al. Refractive-index gas thermometry. Metrologia. 2019;56:032001.
  • Quinn TJ, Martin JE. A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between −40(C and + 100(C. Phil. Trans. R. Soc. London A. 1985;316:85–189.
  • Quinn TJ, Martin JE. Total radiation measurements of thermodynamic temperature. Metrologia. 1996;33:375–381.
  • Sadli M, Machin G, Anhalt K, et al. Dissemination of thermodynamic temperature above the freezing point of silver. Phil Trans R Soc A. 2016;374:20150043.
  • Saunders P, Woolliams E, Yoon H, et al. Uncertainty estimation in primary radiometric temperature measurement, report of the CCT working group on Non-contact thermometry. Paris: BIPM; 2018.
  • Fasci E, De Vizia MD, Merlone A, et al. The Boltzmann constant from the H218O vibration–rotation spectrum: complementary tests and revised uncertainty budget. Metrologia. 2015;52:S233–S241.
  • Gianfrani L. Linking the thermodynamic temperature to an optical frequency: recent advances in Doppler broadening thermometry. Phil Trans R Soc A. 2016;374:20150047.
  • Rogalla H, White DR, Qu JF, et al. Practical realisation of the kelvin by Johnson noise thermometry, CCT working document. Paris: BIPM; (in preparation for 2021).
  • Fleischmann A, Reiser A, Enss C. Noise thermometry for ultralow temperatures. J Low Temp Phys. 2020;201:803–824.
  • Qu J, Benz SP, Coakley KJ, et al. An improved electronic measurement of the Boltzmann constant by Johnson noise thermometry. Metrologia. 2017;54:549–558.
  • Ripple DC, Gam KS, Hermier Y, et al. Summary of facts relating to isotopic effects and the triple point of water: report of the ad hoc CCT task group on the triple point of water. working document of the CCT, CCT/05-07-07. Paris: BIPM; 2005.
  • Fischer J, Fellmuth B, Gaiser C, et al. The Boltzmann project. Metrologia. 2018;55:R1–R20.
  • White DR, Fischer J. The Boltzmann constant and the new kelvin. Metrologia. 2015;52:S213–S216.
  • Mehl JB. Second-order electromagnetic eigenfrequencies of a triaxial ellipsoid. Metrologia. 2009;46:554–559.
  • Mehl JB. Second-order electromagnetic eigenfrequencies of a triaxial ellipsoid II. Metrologia. 2015;52:S227–S232.
  • Moldover MR, Trusler JPM, Edwards TJ, et al. Measurement of the universal gas constant R using a spherical acoustic resonator. Phys Rev Lett. 1988;60:249–252.
  • Pitre L, Guianvarc’h C, Sparasci F, et al. An improved acoustic method for the determination of the Boltzmann constant at LNE-INM/CNAM. C R Phys. 2009;10:835–848.
  • Pitre L, Sparasci F, Truong D, et al. Measurement of the Boltzmann constant kB using a quasi-spherical acoustic resonator. Int J Thermophys. 2011;32:1825–1886.
  • Pitre L, Risegari L, Sparasci F, et al. Determination of the Boltzmann constant k from the speed of sound in helium gas at the triple point of water. Metrologia. 2015;52:S263–S273.
  • Sutton G, Underwood R, Pitre L, et al. Acoustic resonator experiments at the triple point of water: first results for the Boltzmann constant and remaining challenges. Int. J. Thermophys. 2010;31:1310–1346.
  • de Podesta M, Mark DF, Dymock RC, et al. Re-estimation of argon isotope ratios leading to a revised estimate of the Boltzmann constant. Metrologia. 2017;54:683–692.
  • Gavioso RM, Madonna Ripa D, Steur PPM, et al. A determination of the molar gas constant R by acoustic thermometry in helium. Metrologia. 2015;52:S274–S304.
  • Underwood R, de Podesta M, Sutton G, et al. Further estimates of T – T90 close to the triple point of water. Int J Thermophys. 2017;38:44. https://doi.org/10.1007/s10765-016-2176-4
  • Gavioso RM, Madona Ripa D, Steur PPM, et al. Determination of the thermodynamic temperature between 236 and 430 K from speed of sound measurements in helium. Metrologia. 2019;56:045006.
  • Zhang K, Feng XJ, Zhang JT, et al. Determination of T–T90 from 234 K to 303 K by acoustic thermometry with a cylindrical resonator. Metrologia. 2020;57:024004.
  • Kytin VG, Kytin GA, Ghavalya MY, et al. Deviation of temperature determined by ITS-90 temperature scale from thermodynamic temperature measured by acoustic Gas thermometry at 79.0000 K and at 83.8058 K. Int J Thermophys. 2020;41:1–24.
  • Ripple DC, Strouse GF, Moldover MR. Acoustic thermometry results from 271 to 552 K. Int J Thermophys. 2007;28:1789–1799.
  • Feng XJ, Gillis KA, Moldover MR, et al. Microwave-cavity measurements for gas thermometry up to the copper point. Metrologia. 2013;50:219–226.
  • Underwood R, Gardiner T, Finlayson A, et al. A combined non-contact acoustic thermometer and infrared hygrometer for atmospheric measurements. Meteorol App. 2015;22:830–835.
  • Srinivasan K, Sundararajan T, Narayanan S, et al. Acoustic pyrometry in flames. Measurement ( Mahwah N J). 2013;46:315–323.
  • Sutton G, Edwards G, Veltcheva R, et al. Twin-tube practical acoustic thermometry: theory and measurements up to 1000(C. Meas Sci Technol. 2015;26:085901.
  • Puchalski M, Szalewicz K, Lesiuk M, et al. QED calculation of the dipole polarizability of helium atom. Phys Rev A. 2020;101:022505.
  • Gaiser C, Fellmuth B, Haft N. Primary thermometry from 2.5 K to 140 K applying dielectric-constant gas thermometry. Metrologia. 2017;54:141–147.
  • Gaiser C, Fellmuth B, Haft N. Thermodynamic-temperature data from 30 K to 200 K. Metrologia. 2020;57:055003.
  • Bruch LW, Weinhold F. Nuclear motion and breit-pauli corrections to the diamagnetism of atomic helium. J Chem Phys. 2002;117:3243–3247. Erratum. J Chem Phys. 2003;119:638.
  • Rourke PM. NRC microwave refractive index gas thermometry implementation between 24.5 and 84 K. Int J Thermophys. 2017;38:1–27.
  • Rourke PM. Thermodynamic temperature of the triple point of xenon measured by refractive index gas thermometry. Metrologia. 2020;57:024001.
  • Madona Ripa D, Imbraguglio D, Gaiser C, et al. Refractive index gas thermometry between 13.8 and 161.4 K. Metrologia. 2021;(in press).
  • Gao B, Zhang H, Han D, et al. Measurement of thermodynamic temperature between 5 and 24.5 K with single-pressure refractive-index gas thermometry. Metrologia. 2020;57:065006.
  • Saunders P, White DR. Physical basis of interpolation equations for radiation thermometry. Metrologia. 2003;40:195–203.
  • Callen HB, Welton TA. Irreversibility and generalized noise. Phys Rev. 1951;83:34–40.
  • Qu JF, Benz SP, Rogalla H, et al. Johnson noise thermometry. Meas Sci Technol. 2019;30:112001.
  • Benz SP, Burroughs CJ, Dresselhaus PD. Low harmonic distortion in a Josephson arbitrary waveform synthesizer. Appl Phys Lett. 2000;77:1014–1016.
  • Benz SP, Dresselhaus PD, Burroughs CJ. Multitone waveform synthesis with a quantum voltage noise source. IEEE Trans Appl Supercon. 2010;21:681–686.
  • Kirste A, Engert J. A SQUID-based primary noise thermometer for low-temperature metrology. Phil Trans R Soc A. 2016;374:20150050.
  • Magnicon GmbH [Internet] High-Accuracy Magnetic-Field-Fluctuation Thermometer. Hamburg, 2021. Available from http://www.magnicon.com/squid-systems/noise-thermometer/.
  • Bramley P, Cruickshank D, Aubrey J. Developments towards an industrial Johnson noise thermometer. Meas Sci Technol. 2020;31:054003.
  • Preston-Thomas H. The International temperature scale of 1990 (ITS-90). Metrologia. 1990;27:3–10. Erratum. Metrologia. 1990;27:107. Available from: https://www.bipm.org/en/committees/cc/cct/publications-cc.html#kelvin-and-temperature-scales.
  • Rusby RL, Durieux M, Reesink AL, et al. The provisional low temperature scale from 0.9 mK to 1 K, PLTS-2000. J Low T Phys. 2002;126:633–642.
  • BIPM. The international System of Units, 9th Ed. Paris: BIPM; 2015; Available from: //www.bipm.org/en/publications/si-brochure/.
  • BIPM [Internet] Guide to the realisation of the ITS-90. Paris;2019. Available at https://www.bipm.org/en/committees/cc/cct/guide-its90.html.
  • Saunders P. The non-uniqueness of ITS-90 above the silver point and its impact on values of T− T90. Metrologia. 2020;57:045007.
  • White DR, Rourke PMC. Standard platinum resistance thermometer interpolations in a revised temperature scale. Metrologia. 2020;57:035003.
  • Fischer J, de Podesta M, Hill KD, et al. Present estimates of the differences between thermodynamic temperatures and the ITS-90. Int J Thermophys. 2011;32:12–25.
  • Rusby RL. The discontinuity in the first derivative of the ITS-90 at the triple point of water. Int J.Thermophys. 2010;31:1567–1572.
  • Engert J, Fellmuth B, Jousten K. A new 3He vapour-pressure based temperature scale from 0.65 K to 3.2 K consistent with the PLTS-2000. Metrologia. 2007;44:40–52.
  • Pan C, Sparasci F, Plimmer M, et al. Direct comparison of ITS-90 and PLTS-2000 from 0.65 K to 1 K at LNE-CNAM. Metrologia. 2021;(in press).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.