1,075
Views
19
CrossRef citations to date
0
Altmetric
Articles

Something from nothing: linking molecules with virtual light

ORCID Icon & ORCID Icon

References

  • Yuen-Zhou J, Menon VM. Polariton chemistry: thinking inside the (photon) box. Proc Natl Acad Sci. 2019 Mar;116(12):5214–5216.
  • Kimble HJ. Strong interactions of single atoms and photons in cavity QED. Phys Scripta. 1998;T76(1):127–137.
  • Rabi II. Space quantization in a gyrating magnetic field. Phys Rev. 1937;51(8):652.
  • Deng H, Haug H, Yamamoto Y. Exciton-polariton bose-einstein condensation. Rev Mod Phys. 2010;82(2):1489.
  • Orgiu E, George J, Hutchison J, et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat Mater. 2015;14(11):1123–1129.
  • Vurgaftman I, Simpkins BS, Dunkelberger AD, et al. Negligible effect of vibrational polaritons on chemical reaction rates via the density of states pathway. J Phys Chem Lett. 2020;11(9):3557–3562.
  • Imperatore MV, Asbury JB, Giebink NC. Reproducibility of cavity-enhanced chemical reaction rates in the vibrational strong coupling regime. J Chem Phys. 2021;154(19):191103.
  • Agarwal GS. Vacuum-field rabi splittings in microwave absorption by rydberg atoms in a cavity. Phys Rev Lett. 1984 Oct;53:1732–1734.
  • Thomas PA, Tan WJ, Fernandez HA, et al. A new signature for strong light-matter coupling using spectroscopic ellipsometry. Nano Lett. 2020;20:6412–6419.
  • Pippard AB. The physics of vibration. Cambridge: Cambridge University Press, 2007.
  • Novotny L. Strong coupling, energy splitting, and level crossings: a classical perspective. Am J Phys. 2010;78(11):1199–1202.
  • Törmä P, Barnes WL. Strong coupling between surface plasmon polaritons and emitters: a review. Rep Progress Phys. 2014;78(1):013901.
  • Botzung T, Hagenmüller D, Schütz S, et al. Dark state semilocalization of quantum emitters in a cavity. Phys Rev B. 2020;102(14):144202.
  • Shalabney A, George J, Hutchison J, et al. Coherent coupling of molecular resonators with a microcavity mode. Nat Commun. 2015 Jan;6(1):1–6.
  • Vasa P, Wang W, Pomraenke R, et al. Real-time observation of ultrafast rabi oscillations between excitons and plasmons in metal nanostructures with j-aggregates. Nat Photonics. 2013 Jan;7(2):128–132.
  • Tsargorodska A, Cartron ML, Vasilev C, et al. Strong coupling of localized surface plasmons to excitons in light-harvesting complexes. Nano Lett. 2016 Oct;16(11):6850–6856.
  • Rider MS, Arul R, Baumberg JJ, et al. Theory of strong coupling between molecules and surface plasmons on a grating. preprint arXiv:220512745, 2022.
  • Savona V, Andreani L, Schwendimann P, et al. Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid State Commun. 1995;93(9):733–739.
  • Laussy FP, Del Valle E, Tejedor C. Strong coupling of quantum dots in microcavities. Phys Rev Lett. 2008;101 (8):083601.
  • Auffèves A, Gerace D, Gérard JM. Controlling the dynamics of a coupled atom-cavity system by pure dephasing. Phys Rev B. 2010;81(24):245419.
  • Forn-Díaz P, Lamata L, Rico E, et al. Ultrastrong coupling regimes of light-matter interaction. Rev Mod Phys. 2019;91(2):025005.
  • Frisk Kockum A, Miranowicz A, De Liberato S, et al. Ultrastrong coupling between light and matter. Nature Rev Phys. 2019;1(1):19–40.
  • Ciuti C, Bastard G, Carusotto I. Quantum vacuum properties of the intersubband cavity polariton field. Phys Rev B. 2005;72(11):115303.
  • Mueller NS, Okamura Y, Vieira BGM, et al. Deep strong light-matter coupling in plasmonic nanoparticle crystals. Nature. 2020;583:780.
  • Zewail AH. Laser selective chemistry–is it possible? Phys Today. 1980;33(11):27–33.
  • Griffiths DJ. Introduction to electrodynamics. 3rd ed. Upper Saddle River (NJ): Prentice-Hall; 1999.
  • Dintinger J, Klein S, Bustos F, et al. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys Rev B. 2005 Jan;71(3):035424.
  • Eizner E, Martínez-Martínez LA, Yuen-Zhou J, et al. Inverting singlet and triplet excited states using strong light-matter coupling. Sci Adv. 2019;5(12):eaax4482.
  • Chikkaraddy R, de Nijs B, Benz F, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016 Jun;535(7610):127–130.
  • Thompson RJ, Rempe G, Kimble HJ. Observation of normal-mode splitting for an atom in an optical cavity. Phys Rev Lett. 1992 Feb;68:1132–1135.
  • Kaluzny Y, Goy P, Gross M, et al. Observation of self-induced rabi oscillations in two-level atoms excited inside a resonant cavity: the ringing regime of superradiance. Phys Rev Lett. 1983 Sep;51:1175–1178.
  • Orfanakis K, Rajendran SK, Walther V, et al. Rydberg exciton–polaritons in a cu2o microcavity. Nat Mater. 2022;21(7):767–772.
  • Sánchez-Barquilla M, Fernández-Domínguez AI, Feist J, et al. A theoretical perspective on molecular polaritonics. preprint arXiv:220102827, 2022.
  • Baranov DG, Wersall M, Cuadra J, et al. Novel nanostructures and materials for strong light–matter interactions. ACS Photonics. 2018;5(1):24–42.
  • Menghrajani KS, Barnes WL. Strong coupling beyond the light-line. ACS Photonics. 2020;7(9):2448–2459.
  • Richter S, Michalsky T, Fricke L, et al. Maxwell consideration of polaritonic quasi-particle hamiltonians in multi-level systems. Appl Phys Lett. 2015;107(23):231104.
  • Balasubrahmaniyam M, Genet C, Schwartz T. Coupling and decoupling of polaritonic states in multimode cavities. Phys Rev B. 2021;103(24):L241407.
  • García de Abajo FJ. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J Phys Chem C. 2008;112(46):17983–17987.
  • Ribeiro RF, Martínez-Martínez LA, Du M, et al. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem Sci. 2018;9(30):6325–6339.
  • Feist J, Galego J, Garcia-Vidal FJ. Polaritonic chemistry with organic molecules. ACS Photonics. 2018;5(1):205–216.
  • Fregoni J, Garcia-Vidal FJ, Feist J. Theoretical challenges in polaritonic chemistry. ACS Photonics. 2021;9(4):1096–1107.
  • Groenhof G, Climent C, Feist J, et al. Tracking polariton relaxation with multiscale molecular dynamics simulations. J Phys Chem Lett. 2019 Aug;10(18):5476–5483.
  • Feist J, Fernández-Domínguez AI, García-Vidal FJ. Macroscopic qed for quantum nanophotonics: emitter-centered modes as a minimal basis for multiemitter problems. Nanophotonics. 2021;10(1):477–489.
  • Herrera F, Owrutsky J. Molecular polaritons for controlling chemistry with quantum optics. J Chem Phys. 2020;152(10):100902.
  • Nečada M, Martikainen JP, Törmä P. Quantum emitter dipole–dipole interactions in nanoplasmonic systems. Int J Modern Phys B. 2017;31(24):1740006.
  • Shalabney A, George J, Hiura H, et al. Enhanced raman scattering from vibro-polariton hybrid states. Angewandte Chemie Int Edition. 2015 Jun;54(27):7971–7975.
  • Ahn W, Simpkins BS. Raman scattering under strong vibration-cavity coupling. J Phys Chem C. 2021;125(1):830–835.
  • Menghrajani KS, Chen M, Dholakia K, et al. Probing vibrational strong coupling of molecules with wavelength-modulated raman spectroscopy. Adv Opt Mater. 2021 Nov;10(3):2102065.
  • del Pino J, Feist J, Garcia-Vidal FJ. Signatures of vibrational strong coupling in raman scattering. J Phys Chem C. 2015 Dec;119(52):29132–29137.
  • Botzung T, Hagenmüller D, Schütz S, et al. Dark state semilocalization of quantum emitters in a cavity. Phys Rev B. 2020 Oct;102:144202.
  • Rider MS, Palmer SJ, Pocock SR, et al. A perspective on topological nanophotonics: current status and future challenges. J Appl Phys. 2019;125(12):120901.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.