502
Views
0
CrossRef citations to date
0
Altmetric
Articles

Applications of MXene-based memristors in neuromorphic intelligence applications

, , , , &

References

  • Marković D, Mizrahi A, Querlioz D, et al. Physics for neuromorphic computing. Nat Rev Phys. 2020;2(9):499–510. doi:10.1038/s42254-021-00358-7
  • Zhang W, Gao B, Tang J, et al. Neuro-inspired computing chips. Nat Electron. 2020;3(7):371–382. doi:10.1038/s41928-020-0435-7
  • Upadhyay NK, Jiang H, Wang Z, et al. Emerging memory devices for neuromorphic computing. Adv Mater Technol-US. 2019;4(4):1800589. doi:10.1002/admt.201800589
  • Chua LO. Memristor-the missing circuit element. IEEE Trans Circuit Theory. 1971;18(5):507–519. doi:10.1109/TCT.1971.1083337
  • Strukov DB, Snider GS, Stewart DR, et al. The missing memristor found. Nature. 2008;453(7191):80–83. doi:10.1038/nature06932
  • Chua LO, Kang SM. Memristive devices and systems. Proc IEEE. 1976;64(2):209–223. doi:10.1109/PROC.1976.10092
  • Burr GW, Shelby RM, Sebastian A, et al. Neuromorphic computing using non-volatile memory. Adv Phys-X. 2017;2(1):89–124. doi:10.1080/23746149.2016.1259585
  • Yao P, Wu H, Gao B, et al. Fully hardware-implemented memristor convolutional neural network. Nature. 2020;577(7792):641–646. doi:10.1038/s41586-020-1942-4
  • Pi S, Li C, Jiang H, et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat Nanotechnol. 2019;14(1):35–39. doi:10.1038/s41565-018-0302-0
  • Chhowalla M, Shin HS, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5(4):263–275. doi:10.1038/nchem.1589
  • Cong C, Shang J, Wu X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv Opt Mater. 2014;2(2):131–136. doi:10.1002/adom.201300428
  • Cai Y, Lan J, Zhang G, et al. Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys Rev B. 2014;89(3):035438. doi:10.1103/PhysRevB.89.035438
  • Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6(3):147–150. doi:10.1038/nnano.2010.279
  • Zhang L, Gong T, Wang H, et al. Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale. 2019;11(26):12413–12435. doi:10.1039/C9NR02886B
  • Wang X, Xie W, Xu JB. Graphene based non-volatile memory devices. Adv Mater. 2014;26(31):5496–5503. doi:10.1002/adma.201306041
  • Hou X, Chen H, Zhang Z, et al. 2D atomic crystals: a promising solution for next-generation data storage. Adv Electron Mater. 2019;5(9):1800944. doi:10.1002/aelm.201800944
  • Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials. Nature. 2019;567(7748):323–333. doi:10.1038/s41586-019-1013-x
  • Wang M, Cai S, Pan C, et al. Robust memristors based on layered two-dimensional materials. Nat Electron. 2018;1(2):130–136. doi:10.1038/s41928-018-0021-4
  • Tan C, Liu Z, Huang W, et al. Non-volatile resistive memory devices based on solution-processed ultrathin two-dimensional nanomaterials. Chem Soc Rev. 2015;44(9):2615–2628. doi:10.1039/C4CS00399C
  • Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248–4253. doi:10.1002/adma.201102306
  • Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017; 29(18):7633–7644. doi:10.1021/acs.chemmater.7b02847
  • Guo X, Zhang X, Zhao S, et al. High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Phys Chem Chem Phys. 2016;18(1):228–233. doi:10.1039/C5CP06078H
  • Barsoum MW. The Mn+1AXn phases: a new class of solids: thermodynamically stable nanolaminates. Prog Solid State Chem. 2000;28(1-4):201–281. doi:10.1016/S0079-6786(00)00006-6
  • Zhang Y, Wang L, Zhang N, et al. Adsorptive environmental applications of MXene nanomaterials: a review. RSC Adv. 2018;8(36):19895–19905. doi:10.1039/C8RA03077D
  • Zhu J, Ha E, Zhao G, et al. Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coordin Chem Rev. 2017;352:306–327. doi:10.1016/j.ccr.2017.09.012
  • Zhan X, Si C, Zhou J, et al. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 2020;5(2):235–258. doi:10.1039/C9NH00571D
  • Tan H, Tao Q, Pande I, et al. Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves. Nat Commun. 2020;11(1):1–9. doi:10.1038/s41467-020-15105-2
  • Tan H, Zhou Y, Tao Q, et al. Bioinspired multisensory neural network with crossmodal integration and recognition. Nat Commun. 2021;12(1):1–9. doi:10.1038/s41467-021-21404-z
  • Ko TJ, Li H, Mofid SA, et al. Two-dimensional near-atom-thickness materials for emerging neuromorphic devices and applications. IScience. 2020;23(11):101676. doi:10.1016/j.isci.2020.101676
  • Pantazi A, Woźniak S, Tuma T, et al. All-memristive neuromorphic computing with level-tuned neurons. Nanotechnology. 2016;27(35):355205. http://iopscience.iop.org/0957-4484/27/35/355205
  • Gaba S, Sheridan P, Zhou J, et al. Stochastic memristive devices for computing and neuromorphic applications. Nanoscale. 2013;5(13):5872–5878. doi:10.1039/C3NR01176C
  • Shein IR, Ivanovskii AL. Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation. Micro Nano Lett. 2013;8(2):59–62. doi:10.1049/mnl.2012.0797
  • Naguib M, Mochalin VN, Barsoum MW, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014;26(7):992–1005. doi:10.1002/adma.201304138
  • Sinha A, Zhao H, Huang Y, et al. MXene: an emerging material for sensing and biosensing. TrAC Trends Anal Chem. 2018;105:424–435. doi:10.1016/j.trac.2018.05.021
  • Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano. 2012;6(2):1322–1331. doi:10.1021/nn204153h
  • Xie Y, Naguib M, Mochalin VN, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J Am Chem Soc. 2014;136(17):6385–6394. doi:10.1021/ja501520b
  • Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013;341(6153):1502–1505. doi:10.1126/science.1241488
  • Eames C, Islam MS. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J Am Chem Soc. 2014;136(46):16270–16276. doi:10.1021/ja508154e
  • Zhang X, Zhang Z, Zhou Z. MXene-based materials for electrochemical energy storage. J Energy Chem. 2018;27(1):73–85. doi:10.1016/j.jechem.2017.08.004
  • Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):1–17. doi:10.1038/natrevmats.2016.98
  • Ghidiu M, Lukatskaya MR, Zhao MQ, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516(7529):78–81. doi:10.1038/nature13970
  • Lin Z, Rozier P, Duployer B, et al. Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem Commun. 2016;72:50–53. doi:10.1016/j.elecom.2016.08.023
  • Rakhi RB, Ahmed B, Hedhili MN, et al. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem Mater. 2015;27(15):5314–5323. doi:10.1021/acs.chemmater.5b01623
  • Ling Z, Ren CE, Zhao MQ, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA. 2014;111(47):16676–16681. doi:10.1073/pnas.1414215111
  • Levi MD, Lukatskaya MR, Sigalov S, et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv Energy Mater. 2015;5(1):1400815. doi:10.1002/aenm.201400815
  • Hu M, Li Z, Hu T, et al. High-capacitance mechanism for Ti3C2TxMXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano. 2016; 10(12):11344–11350. doi:10.1021/acsnano.6b06597
  • Lukatskaya MR, Bak SM, Yu X, et al. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv Energy Mater. 2015;5(15):1500589. doi:10.1002/aenm.201500589
  • Lukatskaya MR, Kota S, Lin Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy. 2017;2(8):1–6. doi:10.1038/nenergy.2017.105
  • Boota M, Gogotsi Y. MXene—conducting polymer asymmetric pseudocapacitors. Adv Energy Mater. 2019;9(7):1802917. doi:10.1002/aenm.201802917
  • Riazi H, Taghizadeh G, Soroush M. MXene-based nanocomposite sensors. ACS Omega. 2021;6(17):11103–11112. doi:10.1021/acsomega.0c05828
  • Xiao Z, Li Z, Meng X, et al. MXene-engineered lithium–sulfur batteries. J Mater Chem A. 2019;7(40):22730–22743. doi:10.1039/C9TA08600E
  • Michael J, Qifeng Z, Danling W. Titanium carbide MXene: synthesis, electrical and optical properties and their applications in sensors and energy storage devices. Nanomater Nanotechnol. 2019;9:1847980418824470. doi:10.1177/184798041882447
  • Zhang K, Hu Z, Chen J. Functional porous carbon-based composite electrode materials for lithium secondary batteries. J Energy Chem. 2013;22(2):214–225. doi:10.1016/S2095-4956(13)60027-3
  • Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes. Chem Soc Rev. 2013;42(7):3018–3032. doi:10.1039/C2CS35256G
  • Hwang SK, Kang SM, Rethinasabapathy M, et al. MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem Eng J. 2020;397:125428. doi:10.1016/j.cej.2020.125428
  • Liu F, Zhou A, Chen J, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci. 2017;416:781–789. doi:10.1016/j.apsusc.2017.04.239
  • Kausar A. Polymer/MXene nanocomposite–a new age for advanced materials. Polym-Plast Tech Mat. 2021;60(13):1377–1392. doi:10.1080/25740881.2021.1906901
  • Wu J, Guan H, Fan Y, et al. Preparation, characterization and properties of Ti3C2TX MXene aerogel. Integr Ferroelectr. 2022;228(1):254–271. doi:10.1080/10584587.2022.2074216
  • Shahzad F, Zaidi SA, Naqvi RA. 2D transition metal carbides (MXene) for electrochemical sensing: a review. Crit Rev Anal Chem. 2022;52(4):848–864. doi:10.1080/10408347.2020.1836470
  • Ali MR, Bacchu MS, Al-Mamun MR, et al. Recent advanced in MXene research toward biosensor development. Crit Rev Anal Chem. 2022: 1–18. doi:10.1080/10408347.2022.2115286
  • Er D, Li J, Naguib M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Inter. 2014;6(14):11173–11179. doi:10.1021/am501144q
  • Sun D, Wang M, Li Z, et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem Commun. 2014;47:80–83. doi:10.1016/j.elecom.2014.07.026
  • Yakopcic C, Hasan R, Taha TM. Flexible memristor based neuromorphic system for implementing multi-layer neural network algorithms. Int J Parallel Emerg. 2018;33(4):408–429. doi:10.1080/17445760.2017.1321761
  • Howard D, Bull L, de Lacy Costello B. Evolving unipolar memristor spiking neural networks. Connect Sci. 2015; 27(4):397–416. doi:10.1080/09540091.2015.1080225
  • Wang J, Zhuge X, Zhuge F. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence. Sci Technol Adv Mat. 2021;22(1):326–344. doi:10.1080/14686996.2021.1911277
  • Liu J, Xu R. Adaptive synchronisation of memristor-based neural networks with leakage delays and applications in chaotic masking secure communication. Int J Syst Sci. 2018;49(6):1300–1315. doi:10.1080/00207721.2018.1443232
  • Liu D, Ye D. Synchronisation control for a class of complex-valued fractional-order memristor-based delayed neural networks. Int J Syst Sci. 2019;50(10):2015–2029. doi:10.1080/00207721.2019.1646347
  • Zhang C, Zhou H, Chen S, et al. Recent progress on 2D materials-based artificial synapses. Crit Rev Solid State. 2022;47(5):665–690. doi:10.1080/10408436.2021.1935212
  • Liu Y, Zhang D, Li W, et al. Synchronized stationary distribution and synchronization for memristor-based complex networks via intermittent control. Appl Anal. 2022;101(6):1797–1821. doi:10.1080/00036811.2020.1789593
  • Singh A. Design and analysis of memristor-based combinational circuits. IETE J Res. 2020;66(2):182–191. doi:10.1080/03772063.2018.1486741
  • Khot AC, Dongale TD, Park JH, et al. Ti3C2-based MXene oxide nanosheets for resistive memory and synaptic learning applications. ACS Appl Mater Inter. 2021;13(4):5216–5227. doi:10.1021/acsami.0c19028
  • Yan X, Wang K, Zhao J, et al. A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small. 2019;15(25):1900107. doi:10.1002/smll.201900107
  • Zhang L, Huang R, Gao D, et al. Total ionizing dose (TID) effects on TaOx-based resistance change memory. IEEE Trans Electron Devices. 2011;58(8):2800–2804. doi:10.1109/TED.2011.2148121.
  • Chen Y, Wang Y, Luo Y, et al. Realization of artificial neuron using MXene bi-directional threshold switching memristors. IEEE Electron Device Lett. 2019;40(10):1686–1689. doi:10.1109/LED.2019.2936261
  • Shen Z, Zhao C, Liu Y, et al. Artificial synaptic behavior and Its improvement of RRAM device with stacked solution-processed MXene layers. In 2021 18th International SoC Design Conference (ISOCC); 2021 Oct 06-09; Jeju Island, Korea. 2021. p. 187–188. doi:10.1109/ISOCC53507.2021.9613944
  • Wang K, Chen J, Yan X. MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy. 2021;79:105453. doi:10.1016/j.nanoen.2020.105453
  • Yu R, Zhang X, Gao C, et al. Low-voltage solution-processed artificial optoelectronic hybrid-integrated neuron based on 2D MXene for multi-task spiking neural network. Nano Energy. 2022;99:107418. doi:10.1016/j.nanoen.2022.107418
  • Hsiung CP, Liao HW, Gan JY, et al. Formation and instability of silver nanofilament in Ag-based programmable metallization cells. ACS Nano. 2010;4(9):5414–5420. doi:10.1021/nn1010667
  • Liu Q, Sun J, Lv H, et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater. 2012;24(14):1844–1849. doi:10.1002/adma.201104104
  • Wang Y, Shen D, Liang Y, et al. Emulation of multiple-functional synapses using V2C memristors with coexistence of resistive and threshold switching. Mat Sci Semicon Proc. 2021;135:106123. doi:10.1016/j.mssp.2021.106123
  • Chen X, Wang Y, Shen D, et al. First-principles calculation and experimental investigation of a three-atoms-type MXene V2C and its effects on memristive devices. IEEE Trans Nanotechnol. 2021;20:512–516. doi:10.1109/TNANO.2021.3089211
  • Fatima S, Hakim MW, Akinwande D, et al. Self-generated double transition-metal carbide MXene/graphene oxide trilayered memristors for flexible electronics. Mater Today Phys. 2022;26:100730. doi:10.1016/j.mtphys.2022.100730
  • Wang Y, Chen X, Shen D, et al. Artificial neurons based on Ag/V2C/W threshold switching memristors. Nanomaterials. 2021;11(11):2860. doi:10.3390/nano11112860
  • Wang L, Wen J, Jiang Y, et al. Electrical conduction characteristic of a 2D MXene device with Cu/Cr2C/TiN structure based on density functional theory. Materials (Basel). 2020;13(17):3671. doi:10.3390/ma13173671
  • Zhou G, Ren Z, Wang L, et al. Resistive switching memory integrated with amorphous carbon-based nanogenerators for self-powered device. Nano Energy. 2019;63:103793. doi:10.1016/j.nanoen.2019.05.079
  • Wang Y, Liu X, Chen Y, et al. Manipulation of the electrical behaviors of Cu/MXene/SiO2/W memristor. Appl Phys Express. 2019;12(10):106504. doi:10.7567/1882-0786/ab4233
  • Shuck CE, Sarycheva A, Anayee M, et al. Scalable synthesis of Ti3C2Tx MXene. Adv Eng Mater. 2020;22(3):1901241. doi:10.1002/adem.201901241
  • Melianas A, Kang MA, VahidMohammadi A, et al. High-speed ionic synaptic memory based on 2D titanium carbide MXene. Adv Funct Mater. 2022;32(12):2109970. doi:10.1002/adfm.202109970
  • Lu J, Zhang Y, Tao Y, et al. Self-healable castor oil-based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance. J Colloid Interf Sci. 2021;588:164–174. doi:10.1016/j.jcis.2020.12.076
  • Lian X, Shen X, Fu J, et al. Electrical properties and biological synaptic simulation of Ag/MXene/SiO2/Pt RRAM devices. Electronics (Basel). 2020;9(12):2098. doi:10.3390/electronics9122098
  • Zhou K, Li Y, Zhuang S, et al. A novel electrochemical sensor based on CuO-CeO2/MXene nanocomposite for quantitative and continuous detection of H2O2. J Electroanal Chem. 2022;921:116655. doi:10.1016/j.jelechem.2022.116655
  • Nguyen VH, Tabassian R, Oh S, et al. Stimuli-responsive MXene-based actuators. Adv Funct Mater. 2020;30(47):1909504. doi:10.1002/adfm.201909504
  • Sang X, Xie Y, Lin M, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano. 2016;10(10):9193–9200. doi:10.1021/acsnano.6b05240
  • Liu P, Jia C, Zhang W, et al. Threshold switching memristor based on the BaTiO3/Nb: SrTiO3 epitaxial heterojunction for neuromorphic computing. ACS Appl Electron Mater. 2022;4(3):982–989. doi:10.1021/acsaelm.1c01163
  • Lian X, Shen X, Zhang M, et al. Resistance switching characteristics and mechanisms of MXene/SiO2 structure-based memristor. Appl Phys Lett. 2019;115(6):063501. doi:10.1063/1.5087423
  • Guo L, Mu B, Li MZ, et al. Stacked two-dimensional MXene composites for an energy-efficient memory and digital comparator. ACS Appl Mater Inter. 2021;13(33):39595–39605. doi:10.1021/acsami.1c11014
  • Li MY, Li Z, Li H, et al. Zno quantum Dot/MXene nanoflake hybrids for ultraviolet photodetectors. ACS Appl Nano Mater. 2021;4(12):13674–13682. doi:10.1021/acsanm.1c03101
  • Wan X, Xu W, Zhang M, et al. Unsupervised learning implemented by Ti3C2-MXene-based memristive neuromorphic system. ACS Appl Electron Mater. 2020;2(11):3497–3501. doi:10.1021/acsaelm.0c00705
  • Lian X, Shi Y, Shen X, et al. Design of high performance MXene/oxide structure memristors for image recognition applications. Chinese J Electron. In press.
  • He N, Zhang Q, Tao L, et al. V2C-Based memristor for applications of Low power electronic synapse. IEEE Electr Device L. 2021;42(3):319–322. doi:10.1109/LED.2021.3049676
  • Wang Y, Gong Y, Yang L, et al. MXene-ZnO memristor for multimodal in-sensor computing. Adv Funct Mater. 2021;31(21):2100144. doi:10.1002/adfm.202100144
  • Fatima S, Bin X, Mohammad MA, et al. Graphene and MXene based free-standing carbon memristors for flexible 2D memory applications. Adv Electron Mater. 2022; 8(1): 2100549. doi:10.1002/aelm.202100549
  • Lu Y, Li Y, Li H, et al. Low-power artificial neurons based on Ag/TiN/HfAlOx/Pt threshold switching memristor for neuromorphic computing. IEEE Electr Device Lett. 2020;41(8):1245–1248. doi:10.1109/LED.2020.3006581
  • Zhang M, Qin Q, Chen X, et al. Towards an universal artificial synapse using MXene-PZT based ferroelectric memristor. Ceram Int. 2022;48(11):16263–16272. doi:10.1016/j.ceramint.2022.02.175
  • Lian X, Fu J, Gao Z, et al. High-Performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors. Chinese Phys B. 2022. doi:10.1088/1674-1056/ac673f
  • Saha S, Adepu V, Gohel K, et al. Demonstration of a 2-D SnS/MXene nanohybrid asymmetric memristor. IEEE Trans Electron Dev. 2022;69:5921–5927. doi:10.1109/ted.2022.3199710
  • Athena F, West M, Basnet P, et al. Impact of titanium doping and pulsing conditions on the analog temporal response of hafnium oxide based memristor synapses. J Appl Phys. 2022;131(20):204901. doi:10.1063/5.0087001
  • Khan M, Mutee U, Tehreem R, et al. All-printed flexible memristor with metal–non-metal-doped TiO2 nanoparticle thin films. Nanomaterials. 2022;12(13):2289. doi:10.3390/nano12132289
  • Lyu B, Choi Y, Jing H, et al. 2D MXene–TiO2 core–shell nanosheets as a data-storage medium in memory devices. Adv Mater. 2020;32(17):1907633. doi:10.1002/adma.201907633
  • Yang B, Zhang T, Wang J, et al. Novel properties of stearic acid/MXene-graphene oxide shape-stabilized phase change material: ascended phase transition temperature and hierarchical transition. Sol Energ Mat Sol C. 2022;247:111948. doi:10.1016/j.solmat.2022.111948
  • Gong Y, Xing X, Wang Y, et al. Emerging MXenes for functional memories. Small Sci. 2021;1(9):2100006. doi:10.1002/smsc.202100006
  • Zhang M, Wang Y, Gao F, et al. Formation of new MXene film using spinning coating method with DMSO solution and its application in advanced memristive device. Ceram Int. 2019;45(15):19467–19472. doi:10.1016/j.ceramint.2019.06.202
  • Tahir R, Fatima S, Zahra SA, et al. Multiferroic Ti3C2Tx MXene with Tunable Ferroelectric-controlled High Performance Resistive Memory Devices. 2022. arXiv: 2208.13128. doi:10.48550/arXiv.2208.13128
  • Patel M, Hemanth NR, Gosai J, et al. MXenes: promising 2D memristor materials for neuromorphic computing components. Trends Chem. 2022;4:835–849. doi:10.1016/j.trechm.2022.06.004
  • Ismail M, Abbas H, Sokolov A, et al. Emulating synaptic plasticity and resistive switching characteristics through amorphous Ta2O5 embedded layer for neuromorphic computing. Ceram Int. 2021;47(21):30764–30776. doi:10.1016/j.ceramint.2021.07.257
  • Ma C, Luo Z, Huang W, et al. Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat Commun. 2020;11(1):1–9. doi:10.1038/s41467-020-15249-1
  • He N, Liu X, Gao F, et al. Influence of a Novel 2D Material MXene on the Behavior of Memristor and Its Crossbar Array. In 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC); 2019 Jun 12–14; Xi’an, China. 2019. p. 1–3. doi:10.1109/EDSSC.2019.8754215
  • Zhang X, Chen H, Cheng S, et al. Tunable resistive switching in 2D MXene Ti3C2 nanosheets for non-volatile memory and neuromorphic computing. ACS Appl Mater Inter. 2022. doi:10.1021/acsami.2c14006
  • Wen Z, Wu D. Ferroelectric tunnel junctions: modulations on the potential barrier. Adv Mater. 2019;32(27):1904123. doi:10.1002/adma.201904123
  • Gabel M, Gu Y. Understanding microscopic operating mechanisms of a van der Waals planar ferroelectric memristor. Adv Funct Mater. 2021;31(9):2009999. doi:10.1002/adfm.202009999
  • Chen A, Zhang W, Dedon LR, et al. Couplings of polarization with interfacial deep trap and Schottky interface controlled ferroelectric memristive switching. Adv Funct Mater. 2020;30(43):2000664. doi:10.1002/adfm.202000664
  • Wang L, Yang CH, Wen J, et al. Overview of emerging memristor families from resistive memristor to spintronic memristor. J Mater Sci: Mater Electron. 2015;26(7):4618–4628. doi:10.1007/s10854-015-2848-z
  • Sun K, Chen J, Yan X. The future of memristors: materials engineering and neural networks. Adv Funct Mater. 2021;31(8):2006773. doi:10.1002/adfm.202006773
  • Shi M, Zhang M, Yao S, et al. Ferroelectric memristors based hardware of brain functions for future artificial intelligence. J Phys Conf Ser. 2020;1631:012042. doi:10.1088/1742-6596/1631/1/012042
  • Wei H, Yu H, Gong J, et al. Redox MXene artificial synapse with bidirectional plasticity and hypersensitive responsibility. Adv Funct Mater. 2021;31:2007232. doi:10.1002/adfm.202007232
  • Bertelli M, Díaz Fattorini A, De Simone S, et al. Structural and electrical properties of annealed Ge2Sb2Te5 films grown on flexible polyimide. Nanomaterials. 2022;12(12):2001. doi:10.3390/nano12122001
  • Wang Q, Niu G, Wang R, et al. Reliable Ge2Sb2Te5 based phase-change electronic synapses using carbon doping and programmed pulses. J Materiomics. 2022;8(2):382–391. doi:10.1016/j.jmat.2021.08.004
  • Xiao S, Xie X, Wen S, et al. GST-memristor-based online learning neural networks. Neurocomputing. 2018;272:677–682. doi:10.1016/j.neucom.2017.08.014
  • Smagulova K, Adam K, Krestinskaya O, et al. Design of cmos-memristor circuits for lstm architecture. In 2018 IEEE international conference on electron devices and solid state circuits (EDSSC); 2018 Jun 06-08; Shenzhen, China. 2018. p. 1–2. doi:10.1109/EDSSC.2018.8487179
  • Abzhanova T, Dolzhikova I, James AP. Notice of retraction: implementation of true random number generator based on double-scroll attractor circuit with GST memristor emulator. In 2018 International Conference on Computing and Network Communications (CoCoNet); 2018 Aug 15–17; Astana, Kazakhstan. 2018. p. 95–102. doi:10.1109/CoCoNet.2018.8476899
  • Wang Q, Sun HJ, Zhang JJ, et al. Electrode materials for Ge2Sb2Te5-based memristors. J Electron Mater. 2012;41(12):3417–3422. doi:10.1007/s11664-012-2256-6
  • Lu XF, Zhang Y, Wang N, et al. Exploring low power and ultrafast memristor on p-type van der waals SnS. Nano Lett. 2021;21(20):8800–8807. doi:10.1021/acs.nanolett.1c03169
  • Sun L, Wang Z, Jiang J, et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci Adv. 2021;7(20):eabg1455. doi:10.1126/sciadv.abg1455
  • Wu Z, Lu J, Shi T, et al. A habituation sensory nervous system with memristors. Adv Mater. 2020;32(46):2004398. doi:10.1002/adma.202004398
  • Duan H, Cheng S, Qin L, et al. Low-Power memristor based on two-dimensional materials. J Phys Chem Lett. 2022;13(31):7130–7138. doi:10.1021/acs.jpclett.2c01962
  • Liao K, Lei P, Tu M, et al. Memristor based on inorganic and organic two-dimensional materials: mechanisms, performance, and synaptic applications. ACS Appl Mater Inter. 2021;13(28):32606–32623. doi:10.1021/acsami.1c07665
  • Wang L, Yang CH, Wen J. Physical principles and current status of emerging non-volatile solid state memories. Electron Mater Lett. 2015;11(4):505–543. doi:10.1007/s13391-015-4431-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.