534
Views
1
CrossRef citations to date
0
Altmetric
Articles

Using atom interferometry to measure gravity

, &
Pages 138-155 | Received 10 Nov 2022, Accepted 10 Feb 2023, Published online: 01 Mar 2023

References

  • De Broglie L Recherches sur la théorie des Quanta [French] [dissertation] Univ. Paris; 1924.
  • Thomson GP. Experiments on the diffraction of cathode rays. Proc R Soc London Ser A, Containing Papers Math Phys Character. 1928;117:600–609.
  • Davisson C, Germer LH. Diffraction of electrons by a crystal of nickel. Phys Rev. 1927;30:705–740.
  • Estermann I, Stern A. Beugung von molekularstrahlen (bending of molecular rays). Z Phys. 1930;61:95.
  • Wollan EO, Shull CG. The diffraction of neutrons by crystalline powders. Phys Rev. 1948;73:830–841.
  • Cronin AD, Schmiedmayer J, Pritchard DE. Optics and interferometry with atoms and molecules. Rev Mod Phys. 2009;81:1051–1129.
  • Rauch H. Neutron interferometry. Oxford: Oxford University Press; 2000.
  • Colella R, Overhauser AW, Werner SA. Observation of gravitationally induced quantum interference. Phys Rev Lett. 1975;34:1472–1474.
  • Keith DW, Ekstrom CR, Turchette QA, et al. An interferometer for atoms. Phys Rev Lett. 1991;66:2693–2696.
  • Carnal O, Mlynek J. Young's double-slit experiment with atoms: A simple atom interferometer. Phys Rev Lett. 1991;66:2689–2692.
  • Riehle F, Kisters T, Witte A, et al. Optical ramsey spectroscopy in a rotating frame: sagnac effect in a matter–wave interferometer. Phys Rev Lett. 1991;67:177–180.
  • Kasevich M, Chu S. Atomic interferometry using stimulated raman transitions. Phys Rev Lett. 1991;67:181–184.
  • Hänsch T, Schawlow A. Cooling of gases by laser radiation. Opt Commun. 1975;13:68–69.
  • Nobel Prize in Physics: Claude Cohen-Tannoudji with Steven Chu and William D. Phillips in 1997. La lettre du Collège de France pp. 12–13 (2015)
  • Kasevich M, Chu S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Appl Phys B Photophysics Laser Chem. 1992;54:321–332.
  • Rabi II. Space quantization in a gyrating magnetic field. Phys Rev. 1937;51:652–654.
  • Bongs K, Holynski M, Vovrosh J, et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat Rev Phys. 2019;1:731–739.
  • Peters A, Chung KY, Chu S. Measurement of gravitational acceleration by dropping atoms. Nature. 1999;400:849–852.
  • Peters A, Chung KY, Chu S. High-precision gravity measurements using atom interferometry. Metrologia. 2001;38:25–61.
  • Hu Z-K, Sun B-L, Duan X-C, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys Rev A. 2013;88:4.
  • Dimopoulos S, Graham PW, Hogan JM, et al. Testing general relativity with atom interferometry. Phys Rev Lett. 2007;98:111102.
  • El-Neaj YA, Alpigiani C, Amairi-Pyka S, et al. AEDGE: atomic experiment for dark matter and gravity exploration in space. EPJ Quantum Technol. 2020;7:1–27.
  • Aguilera DN, Ahlers H, Battelier B, et al. STE-QUEST – test of the universality of free fall using cold atom interferometry. Classical Quant Gravity. 2014;31:115010.
  • Fixler JB, Foster GT, McGuirk JM, et al. Atom interferometer measurement of the newtonian constant of gravity. Science. 2007;315:74–77.
  • Rosi G, Sorrentino F, Cacciapuoti L, et al. Precision measurement of the newtonian gravitational constant using cold atoms. Nature. 2014;510:518–521.
  • Stray B, Lamb A, Kaushik A, et al. Quantum sensing for gravity cartography. Nature. 2022;602:590–594.
  • Ménoret V, Vermeulen P, Moigne NL, et al. Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter. Sci Rep. 2018;8:1.
  • Wu X, Pagel Z, Malek BS, et al. Gravity surveys using a mobile atom interferometer. Sci Adv. 2019;5:eaax0800.
  • Schmidt M, Senger A, Hauth M, et al. A mobile high-precision absolute gravimeter based on atom interferometry. Gyroscopy Navig. 2011;2:170–177.
  • Antoni-Micollier L, Carbone D, Ménoret V, et al. Detecting volcano-related underground mass changes with a quantum gravimeter. Geophys Res Lett. 2022;49:097814.
  • Janvier C, Ménoret V, Desruelle B, et al. Compact differential gravimeter at the quantum projection-noise limit. Phys Rev A. 2022;105:022801.
  • Wang H, Wang K, Xu Y, et al. A truck-borne system based on cold atom gravimeter for measuring the absolute gravity in the field. Sensors. 2022;22:6172.
  • Bidel Y, Zahzam N, Blanchard C, et al. Absolute marine gravimetry with matter–wave interferometry. Nat Commun. 2018;9:627.
  • Bidel Y, Zahzam N, Bresson A, et al. Absolute airborne gravimetry with a cold atom sensor. J Geod. 2020;94:20.
  • Barrett B, Antoni-Micollier L, Chichet L, et al. Dual matter–wave inertial sensors in weightlessness. Nat Commun. 2016;7:13786.
  • Gouët JL, Mehlstäubler T, Kim J, et al. Limits to the sensitivity of a low noise compact atomic gravimeter. Appl Phys B. 2008;92:133–144.
  • Geiger R, Landragin A, Merlet S, et al. High-accuracy inertial measurements with cold-atom sensors. AVS Quant Sci. 2020;2:024702.
  • Hosten O, Engelsen NJ, Krishnakumar R, et al. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature. 2016;529:505–508.
  • Kuzmich A, Bigelow NP, Mandel L. Atomic quantum non-demolition measurements and squeezing. Europhys Lett (EPL). 1998;42:481–486.
  • Allan D. Statistics of atomic frequency standards. Proc IEEE. 1966;54:221–230.
  • Canuel B, Leduc F, Holleville D, et al. Six-axis inertial sensor using cold-atom interferometry. Phys Rev Lett. 2006;97:010402.
  • Santarelli G, Laurent P, Lemonde P, et al. Quantum projection noise in an atomic fountain: A high stability cesium frequency standard. Phys Rev Lett. 1999;82:4619–4622.
  • McGuirk JM, Foster GT, Fixler JB, et al. Low-noise detection of ultracold atoms. Opt Lett. 2001;26:364.
  • Rocco E, Palmer RN, Valenzuela T, et al. Fluorescence detection at the atom shot noise limit for atom interferometry. New J Phys. 2014;16:093046.
  • Schkolnik V, Leykauf B, Hauth M, et al. The effect of wavefront aberrations in atom interferometry. Appl Phys B. 2015;120:311–316.
  • Karcher R, Imanaliev A, Merlet S, et al. Improving the accuracy of atom interferometers with ultracold sources. New J Phys. 2018;20:113041.
  • Hamilton P, Jaffe M, Brown JM, et al. Atom interferometry in an optical cavity. Phys Rev Lett. 2015;114:100405.
  • Trimeche A, Langlois M, Merlet S, et al. Active control of laser wavefronts in atom interferometers. Phys Rev Appl. 2017;7:034016.
  • Weiss DS, Young BC, Chu S. Precision measurement of h/m cs based on photon recoil using laser-cooled atoms and atomic interferometry. Appl Phys B Lasers Optics. 1994;59:217–256.
  • Hartwig J, Abend S, Schubert C, et al. Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer. New J Phys. 2015;17:035011.
  • Gustavson TL, Bouyer P, Kasevich MA. Precision rotation measurements with an atom interferometer gyroscope. Phys Rev Lett. 1997;78:2046–2049.
  • Geiger R, Ménoret V, Stern G, et al. Detecting inertial effects with airborne matter–wave interferometry. Nat Commun. 2011;2:474.
  • Barrett B, Geiger R, Dutta I, et al. The sagnac effect: 20 years of development in matter–wave interferometry. C R Phys. 2014;15:875–883.
  • Lan S-Y, Kuan P-C, Estey B, et al. Influence of the coriolis force in atom interferometry. Phys Rev Lett. 2012;108:090402.
  • Hauth M, Freier C, Schkolnik V, et al. First gravity measurements using the mobile atom interferometer GAIN. Appl Phys B. 2013;113:49–55.
  • Hensley JM, Peters A, Chu S. Active low frequency vertical vibration isolation. Rev Sci Instrum. 1999;70:2735–2741.
  • Merlet S, Gouët JL, Bodart Q, et al. Operating an atom interferometer beyond its linear range. Metrologia. 2009;46:87–94.
  • Lautier J, Volodimer L, Hardin T, et al. Hybridizing matter–wave and classical accelerometers. Appl Phys Lett. 2014;105:144102.
  • Xu V, Jaffe M, Panda CD, et al. Probing gravity by holding atoms for 20 seconds. Science. 2019;366:745–749.
  • Müller H, wey Chiow S, Long Q, et al. Atom interferometry with up to 24-photon-momentum-transfer beam splitters. Phys Rev Lett. 2008;100:180405.
  • Gillot P, Francis O, Landragin A, et al. Stability comparison of two absolute gravimeters: optical versus atomic interferometers. Metrologia. 2014;51:L15–L17.
  • McGuirk JM, Foster GT, Fixler JB, et al. Sensitive absolute-gravity gradiometry using atom interferometry. Phys Rev A. 2002;65:033608.
  • Sorrentino F, Bodart Q, Cacciapuoti L, et al. Sensitivity limits of a raman atom interferometer as a gravity gradiometer. Phys Rev A. 2014;89:023607.
  • Biedermann GW, Wu X, Deslauriers L, et al. Testing gravity with cold-atom interferometers. Phys Rev A. 2015;91:033629.
  • Crawford SE, Shugayev RA, Paudel HP, et al. Quantum sensing for energy applications: review and perspective. Adv Quant Technol. 2021;4:2100049.
  • Olsson P-A, Milne G, Scherneck H-G, et al. The relation between gravity rate of change and vertical displacement in previously glaciated areas. J Geodyn. 2015;83:76–84.
  • Djamour Y, Vernant P, Bayer R, et al. GPS and gravity constraints on continental deformation in the alborz mountain range, iran. Geophys J Int. 2010;183:1287–1301.
  • Wu L, Wang H, Chai H, et al. Performance evaluation and analysis for gravity matching aided navigation. Sensors. 2017;17:769.
  • Rogobete M, Tărăbuţă O, Rogobete AD, et al. Using gravity potential field and inertial navigation system in real time submarine positioning. IOP Conference Ser Earth Environ Sci. 2018;172:012005.
  • Barrett B, Bertoldi A, Bouyer P. Inertial quantum sensors using light and matter. Phys Scripta. 2016;91:053006.
  • Dickerson SM, Hogan JM, Sugarbaker A, et al. Multiaxis inertial sensing with long-time point source atom interferometry. Phys Rev Lett. 2013;111:083001.
  • Hoth GW, Pelle B, Riedl S, et al. Point source atom interferometry with a cloud of finite size. Appl Phys Lett. 2016;109:071113.
  • Durfee DS, Shaham YK, Kasevich MA. Long-term stability of an area-reversible atom-interferometer sagnac gyroscope. Phys Rev Lett. 2006;97:240801.
  • Tackmann G, Berg P, Schubert C, et al. Self-alignment of a compact large-area atomic sagnac interferometer. New J Phys. 2012;14:015002.
  • Rakholia AV, McGuinness HJ, Biedermann GW. Dual-axis high-data-rate atom interferometer via cold ensemble exchange. Phys Rev Appl. 2014;2:054012.
  • Barrett B, Cheiney P, Battelier B, et al. Multidimensional atom optics and interferometry. Phys Rev Lett. 2019;122:043604.
  • Templier S, Cheiney P, d'Armagnac de Castanet Q, et al. Tracking the vector acceleration with a hybrid quantum accelerometer triad. Sci Adv. 2022;8:eadd3854.
  • Lévèque T, Gauguet A, Michaud F, et al. Enhancing the area of a raman atom interferometer using a versatile double-diffraction technique. Phys Rev Lett. 2009;103:080405.
  • Perrin I, Bernard J, Bidel Y, et al. Zero-velocity atom interferometry using a retroreflected frequency-chirped laser. Phys Rev A. 2019;100:053618.
  • Biedermann G, McGuinness H, Rakholia A, et al. Atom interferometry in a warm vapor. Phys Rev Lett. 2017;118:163601.
  • Dutta I, Savoie D, Fang B, et al. Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability. Phys Rev Lett. 2016;116:183003.
  • Kwolek JM, Black AT. Continuous sub-doppler-cooled atomic beam interferometer for inertial sensing. Phys Rev Appl. 2022;17:024061.
  • Bonnin A, Diboune C, Zahzam N, et al. New concepts of inertial measurements with multi-species atom interferometry. Appl Phys B. 2018;124:181.
  • Avinadav C, Yankelev D, Firstenberg O, et al. Composite-fringe atom interferometry for high-dynamic-range sensing. Phys Rev Appl. 2020;13:054053.
  • Schlippert D, Hartwig J, Albers H, et al. Quantum test of the universality of free fall. Phys Rev Lett. 2014;112:203002.
  • Tarallo M, Mazzoni T, Poli N, et al. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects. Phys Rev Lett. 2014;113:023005.
  • Bouchendira R, Cladé P, Guellati-Khélifa S, et al. New determination of the fine structure constant and test of the quantum electrodynamics. Phys Rev Lett. 2011;106:080801.
  • Parker RH, Yu C, Zhong W, et al. Measurement of the fine-structure constant as a test of the standard model. Science. 2018;360:191–195.
  • Arvanitaki A, Graham PW, Hogan JM, et al. Search for light scalar dark matter with atomic gravitational wave detectors. Phys Rev D. 2018;97:075020.
  • Chaibi W, Geiger R, Canuel B, et al. Low frequency gravitational wave detection with ground-based atom interferometer arrays. Phys Rev D. 2016;93:021101.
  • Dimopoulos S, Graham PW, Hogan JM, et al. Atomic gravitational wave interferometric sensor. Phys Rev D. 2008;78:122002.
  • Badurina L, Bentine E, Blas D, et al. Aion: an atom interferometer observatory and network. J Cosm Astro Phys. 2020;2020:011.
  • Graham P, Hogan J, Kasevich M, et al. New method for gravitational wave detection with atomic sensors. Phys Rev Lett. 2013;110:171102.
  • Kovachy T, Asenbaum P, Overstreet C, et al. Quantum superposition at the half-metre scale. Nature. 2015;528:530–533.
  • Gouët JL, Cheinet P, Kim J, et al. Influence of lasers propagation delay on the sensitivity of atom interferometers. Euro Phys J D. 2007;44:419–425.
  • Hu L, Poli N, Salvi L, et al. Atom interferometry with the sr optical clock transition. Phys Rev Lett. 2017;119:263601.
  • Kotru K, Butts DL, Kinast JM, et al. Large-area atom interferometry with frequency-swept raman adiabatic passage. Phys Rev Lett. 2015;115:103001.
  • Chiow S, Kovachy T, Chien H, et al. 102 ℏkLarge area atom interferometers. Phys Rev Lett. 2011;107:130403.
  • Mazzoni T, Zhang X, Del Aguila R, et al. Large-momentum-transfer bragg interferometer with strontium atoms. Phys Rev A. 2015;92:053619.
  • McDonald GD, Kuhn CCN, Bennetts S, et al. 80 ℏk momentum separation with Bloch oscillations in an optically guided atom interferometer. Phys Rev A. 2013;88:053620.
  • Abend S, Gebbe M, Gersemann M, et al. Atom-chip fountain gravimeter. Phys Rev Lett. 2016;117:203003.
  • Plotkin-Swing B, Gochnauer D, McAlpine KE, et al. Three-path atom interferometry with large momentum separation. Phys Rev Lett. 2018;121:133201.
  • Rudolph J, Wilkason T, Nantel M, et al. Large momentum transfer clock atom interferometry on the 689 nm intercombination line of strontium. Phys Rev Lett. 2020;124:083604.
  • Jaffe M, Xu V, Haslinger P, et al. Efficient adiabatic spin-dependent kicks in an atom interferometer. Phys Rev Lett. 2018;121:040402.
  • Dunning A, Gregory R, Bateman J, et al. Composite pulses for interferometry in a thermal cold atom cloud. Phys Rev A. 2014;90:033608.
  • Berg P, Abend S, Tackmann G, et al. Composite-light-pulse technique for high-precision atom interferometry. Phys Rev Lett. 2015;114:063002.
  • Levitt M, Freeman R. Compensation for pulse imperfections in NMR spin-echo experiments. J Magnet Reson (1969). 1981;43:65–80.
  • Warren WS, Rabitz H, Dahleh M. Coherent control of quantum dynamics: the dream is alive. Science. 1993;259:1581–1589.
  • Saywell J, Carey M, Belal M, et al. Optimal control of raman pulse sequences for atom interferometry. J Phys B: Atom, Molecul Opt Phys. 2020;53:085006.
  • Wilkason T, Nantel M, Rudolph J, et al. Atom interferometry with floquet atom optics. Phys Rev Lett. 2022;129:183202.
  • Riou I, Mielec N, Lefèvre G, et al. A marginally stable optical resonator for enhanced atom interferometry. J Phys B: Atomic Mol Opt Phys. 2017;50:155002.
  • Nourshargh R, Lellouch S, Hedges S, et al. Circulating pulse cavity enhancement as a method for extreme momentum transfer atom interferometry. Commun Phys. 2021;4:257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.