3,627
Views
111
CrossRef citations to date
0
Altmetric
Review Article

Effects of industrial back-support exoskeletons on body loading and user experience: an updated systematic review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 685-711 | Received 21 Sep 2020, Accepted 22 Dec 2020, Published online: 16 Mar 2021

References

  • Abdoli-Eramaki, M., J. M. Stevenson, S. A. Reid, and T. J. Bryant. 2007. “Mathematical and Empirical Proof of Principle for an on-Body Personal Lift Augmentation Device (PLAD).” Journal of Biomechanics 40 (8): 1694–1700. doi:10.1016/j.jbiomech.2006.09.006.
  • Alemi, M. M., J. Geissinger, A. A. Simon, S. E. Chang, and A. T. Asbeck. 2019. “A Passive Exoskeleton Reduces Peak and Mean EMG during Symmetric and Asymmetric Lifting.” Journal of Electromyography and Kinesiology 47: 25–34. doi:10.1016/j.jelekin.2019.05.003.
  • Alemi, M. M., S. Madinei, S. Kim, D. Srinivasan, and M. A. Nussbaum. 2020. “Effects of Two Passive Back-Support Exoskeletons on Muscle Activity, Energy Expenditure, and Subjective Assessments during Repetitive Lifting.” Human Factors 62 (3): 458–474. doi:10.1177/0018720819897669.
  • Amandels, S., H. O. Het Eyndt, L. Daenen, and V. Hermans. 2018. “Introduction and Testing of a Passive Exoskeleton in an Industrial Working Environment.” Paper presented at the Congress of the International Ergonomics Association, Florence, Italy, August 26–30.
  • Baltrusch, S. J., H. Houdijk, J. H. van Dieen, and J. Kruif. 2020. “Passive Trunk Exoskeleton Acceptability and Effects on Self-Efficacy in Employees with Low-Back Pain: A Mixed Method Approach.” Journal of Occupational Rehabilitation. Advance online publication. doi:10.1007/s10926-020-09891-1.
  • Baltrusch, S. J., J. H. van Dieën, S. M. Bruijn, A. S. Koopman, C. A. M. van Bennekom, and H. Houdijk. 2019. “The Effect of a Passive Trunk Exoskeleton on Metabolic Costs during Lifting and Walking.” Ergonomics 62 (7): 903–916. doi:10.1080/00140139.2019.1602288.
  • Baltrusch, S. J., J. H. van Dieen, A. S. Koopman, M. B. Näf, C. Rodriguez-Guerrero, J. Babič, and H. Houdijk. 2020. “SPEXOR Passive Spinal Exoskeleton Decreases Metabolic Cost during Symmetric Repetitive Lifting.” European Journal of Applied Physiology 120 (2): 401–412. doi:10.1007/s00421-019-04284-6.
  • Baltrusch, S. J., J. H. van Dieen, C. A. M. van Bennekom, and H. Houdijk. 2020. “Testing an Exoskeleton That Helps Workers with Low-Back Pain: Less Discomfort with the Passive SPEXOR Trunk Device.” IEEE Robotics & Automation Magazine 27 (1): 66–76. doi:10.1109/MRA.2019.2954160.
  • Baltrusch, S. J., J. H. van Dieën, C. A. M. van Bennekom, and H. Houdijk. 2018. “The Effect of a Passive Trunk Exoskeleton on Functional Performance in Healthy Individuals.” Applied Ergonomics 72: 94–106. doi:10.1016/j.apergo.2018.04.007.
  • Bogue, R. 2018. “Exoskeletons – a Review of Industrial Applications.” Industrial Robot: An International Journal 45 (5): 585–590. doi:10.1108/IR-05-2018-0109.
  • Bosch, T., J. van Eck, K. Knitel, and M. de Looze. 2016. “The Effects of a Passive Exoskeleton on Muscle Activity, Discomfort and Endurance Time in Forward Bending Work.” Applied Ergonomics 54: 212–217. doi:10.1016/j.apergo.2015.12.003.
  • Bostelman, R., E. Messina, and S. Foufou. 2017. “Cross-Industry Standard Test Method Developments: From Manufacturing to Wearable Robots.” Frontiers of Information Technology & Electronic Engineering 18 (10): 1447–1457. doi:10.1631/FITEE.1601316.
  • Chen, B., L. Grazi, F. Lanotte, N. Vitiello, and S. Crea. 2018. “A Real-Time Lift Detection Strategy for a Hip Exoskeleton.” Frontiers in Neurorobotics 12: 17. doi:10.3389/fnbot.2018.00017.
  • de Kok, J., P. Vroonhof, J. Snijders, G. Roullis, M. Clarke, K. Peereboom and I. Isusi. 2019. Work-Related Musculoskeletal Disorders: Prevalence, Costs and Demographics in the EU. Luxembourg City, Luxembourg: Publications Office of the European Union.
  • de Looze, M. P., T. Bosch, F. Krause, K. S. Stadler, and L. O’Sullivan. 2016. “Exoskeletons for Industrial Application and Their Potential Effects on Physical Work Load.” Ergonomics 59 (5): 671–681. doi:10.1080/00140139.2015.1081988.
  • Dwivedi, Y., N. Rana, A. Jeyaraj, M. Clement, and M. Williams. 2019. “Re-Examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model.” Information Systems Frontiers 21 (3): 719–734. doi:10.1007/s10796-017-9774-y.
  • Elprama, S. A., J. T. A. Vannieuwenhuyze, S. De Bock, B. Vanderborght, K. De Pauw, R. Meeusen, and A. Jacobs. 2020. “Social Processes: What Determines Industrial Workers’ Intention to Use Exoskeletons?” Human Factors 62 (3): 337–350. doi:10.1177/0018720819889534.
  • Frost, D. M., M. Abdoli-E, and J. M. Stevenson. 2009. “PLAD (Personal Lift Assistive Device) Stiffness Affects the Lumbar Flexion/Extension Moment and the Posterior Chain EMG during Symmetrical Lifting Tasks.” Journal of Electromyography and Kinesiology 19 (6): e403–e412. doi:10.1016/j.jelekin.2008.12.002.
  • Gopura, R., and K. Kiguchi. 2009. “Mechanical Designs of Active Upper-Limb Exoskeleton Robots: State-of-the-Art and Design Difficulties.” Paper presented at the 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, June 23–26.
  • Goršič, M., Y. Regmi, A. P. Johnson, B. Dai, and D. Novak. 2020. “A Pilot Study of Varying Thoracic and Abdominal Compression in a Reconfigurable Trunk Exoskeleton during Different Activities.” IEEE Transactions on Biomedical Engineering 67 (6): 1585–1581. doi:10.1109/TBME.2019.2940431.
  • Heo, U., S. J. Kim, and J. Kim. 2020. “Backdrivable and Fully-Portable Pneumatic Back Support Exoskeleton for Lifting Assistance.” IEEE Robotics and Automation Letters 5 (2): 2047–2053. doi:10.1109/LRA.2020.2969169.
  • Howard, J., V. V. Murashov, B. D. Lowe, and M. L. Lu. 2020. “Industrial Exoskeletons: Need for Intervention Effectiveness Research.” American Journal of Industrial Medicine 63 (3): 201–208. doi:10.1002/ajim.23080.
  • Hussain, M., J. Park, N. Kim, H. K. Kim, and J. Lee. 2020. “Effects of Exoskeleton Robot on Human Posture and Lumbar Pressure during Manual Lifting Tasks.” ICIC Express Letters, Part B: Applications 11 (5): 439–445. doi:10.24507/icicelb.11.05.439.
  • Huysamen, K., M. P. de Looze, T. Bosch, J. Ortiz, S. Toxiri, and L. O’Sullivan. 2018. “Assessment of an Active Industrial Exoskeleton to Aid Dynamic Lifting and Lowering Manual Handling Tasks.” Applied Ergonomics 68: 125–131. doi:10.1016/j.apergo.2017.11.004.
  • Hyun, D. J., H. Lim, S. Park, and S. Nam. 2020. “Singular Wire-Driven Series Elastic Actuation with Force Control for a Waist Assistive Exoskeleton, H-WEXv2.” IEEE/ASME Transactions on Mechatronics 25 (2): 1026–1035. doi:10.1109/TMECH.2020.2970448.
  • ISO 9241-11. 2018. Ergonomics of human-system interaction - Usability: Definitions and concepts. (ISO Standard No. 9241-11:2018).
  • ISO/IEC 25022. 2016. Systems and Software Engineering - Systems and Software Quality Requirements and Evaluation (SQuaRE) - Measurement of Quality in Use. (ISO/IEC Standard No. 25022:2016).
  • Kim, S., S. Madinei, M. M. Alemi, D. Srinivasan, and M. A. Nussbaum. 2020. “Assessing the Potential for "Undesired" Effects of Passive Back-Support Exoskeleton Use during a Simulated Manual Assembly Task: Muscle Activity, Posture, Balance, Discomfort, and Usability.” Applied Ergonomics 89: 103194.
  • Kobayashi, H., and H. Nozaki. 2008. “Development of Support System for Forward Tilting of the Upper Body.” Paper presented at the 2008 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, August 5–8.
  • Koopman, A. S., I. Kingma, M. P. de Looze, and J. H. van Dieën. 2020. “Effects of a Passive Back Exoskeleton on the Mechanical Loading of the Low-Back during Symmetric Lifting.” Journal of Biomechanics 102: 109486. doi:10.1016/j.jbiomech.2019.109486.
  • Koopman, A. S., I. Kingma, G. S. Faber, M. P. de Looze, and J. H. van Dieën. 2019. “Effects of a Passive Exoskeleton on the Mechanical Loading of the Low Back in Static Holding Tasks.” Journal of Biomechanics 83: 97–103. doi:10.1016/j.jbiomech.2018.11.033.
  • Koopman, A. S., M. Näf, S. J. Baltrusch, I. Kingma, C. Rodriguez-Guerrero, J. Babič, M. P. de Looze, and J. H. van Dieën. 2020. “Biomechanical Evaluation of a New Passive Back Support Exoskeleton.” Journal of Biomechanics 105: 109795. doi:10.1016/j.jbiomech.2020.109795.
  • Koopman, A. S., S. Toxiri, V. Power, I. Kingma, J. H. van Dieën, J. Ortiz, and M. P. de Looze. 2019. “The Effect of Control Strategies for an Active Back-Support Exoskeleton on Spine Loading and Kinematics during Lifting.” Journal of Biomechanics 91: 14–22. doi:10.1016/j.jbiomech.2019.04.044.
  • Kozinc, Ž., S. Baltrusch, H. Houdijk, and N. Šarabon. 2020. “Short-Term Effects of a Passive Spinal Exoskeleton on Functional Performance, Discomfort and User Satisfaction in Patients with Low Back Pain.” Journal of Occupational Rehabilitation. Advance online publication. doi:10.1007/s10926-020-09899-7.
  • Lanotte, F., L. Grazi, B. Chen, N. Vitiello, and S. Crea. 2018. “A Low-Back Exoskeleton can Reduce the Erector Spinae Muscles Activity During Freestyle Symmetrical Load Lifting Tasks.” Paper presented at the 7th IEEE International Conference on Biomedical Robotics and Biomechatronics, Twente, The Netherlands, August 27–29.
  • Laugwitz, B., T. Held, and M. Schrepp. 2008. “Construction and Evaluation of a User Experience Questionnaire.” Paper presented at the Symposium of the Austrian HCI and Usability Engineering Group Meeting, Graz, Austria, November 20–21.
  • Lazzaroni, M., S. Toxiri, D. G. Caldwell, S. Anastasi, L. Monica, E. D. Momi, and J. Ortiz. 2019. “Acceleration-Based Assistive Strategy to Control a Back-Support Exoskeleton for Load Handling: Preliminary Evaluation.” Paper presented at the 16th International Conference on Rehabilitation Robotics, Jeju, South Korea, June 24–27.
  • Lowe, B. D., W. G. Billotte, and D. R. Peterson. 2019. “ASTM F48 Formation and Standards for Industrial Exoskeletons and Exosuits.” IISE Transactions on Occupational Ergonomics and Human Factors 7 (3–4): 230–236. doi:10.1080/24725838.2019.1579769.
  • Madinei, S., M. M. Alemi, S. Kim, D. Srinivasan, and M. A. Nussbaum. 2020a. “Biomechanical Evaluation of Passive Back-Support Exoskeletons in a Precision Manual Assembly Task: “Expected” Effects on Trunk Muscle Activity, Perceived Exertion, and Task Performance.” Human Factors. Advance online publication. doi:0018720819890966.
  • Madinei, S., M. M. Alemi, S. Kim, D. Srinivasan, and M. A. Nussbaum. 2020b. “Biomechanical Assessment of Two Back-Support Exoskeletons in Symmetric and Asymmetric Repetitive Lifting with Moderate Postural Demands.” Applied Ergonomics 88: 103156. doi:10.1016/j.apergo.2020.103156.
  • Miura, K., H. Kadone, M. Koda, T. Abe, H. Endo, H. Murakami, M. Doita, H. Kumagai, K. Nagashima, K. Fujii, H. Noguchi, T. Funayama, H. Kawamoto, Y. Sankai, and M. Yamazaki. 2018. “The Hybrid Assisted Limb (HAL) for Care Support, a Motion Assisting Robot Providing Exoskeletal Lumbar Support, Can Potentially Reduce Lumbar Load in Repetitive Snow-Shoveling Movements.” Journal of Clinical Neuroscience 49: 83–86. doi:10.1016/j.jocn.2017.11.020.
  • Moher, D., A. Liberati, J. Tetzlaff, and D. G. Altman. 2009. “Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement.” BMJ 339 (1): b2535. doi:10.1136/bmj.b2535.
  • Motmans, R., T. Debaets, and S. Chrispeels. 2019. “Effect of a Passive Exoskeleton on Muscle Activity and Posture during Order Picking. In.” Advances in Intelligent Systems and Computing 820: 338–346.
  • Picchiotti, M. T., E. B. Weston, G. G. Knapik, J. S. Dufour, and W. S. Marras. 2019. “Impact of Two Postural Assist Exoskeletons on Biomechanical Loading of the Lumbar Spine.” Applied Ergonomics 75: 1–7. doi:10.1016/j.apergo.2018.09.006.
  • Reneman, M. F., S. Brouwer, A. Meinema, P. U. Dijkstra, J. H. B. Geertzen, and J. W. Groothoff. 2004. “Test–Retest Reliability of the Isernhagen Work Systems Functional Capacity Evaluation in Healthy Adults.” Journal of Occupational Rehabilitation 14 (4): 295–305. doi:10.1023/B:JOOR.0000047431.40598.47.
  • Shore, L., V. Power, B. Hartigan, S. Schülein, E. Graf, A. de Eyto, and L. O’Sullivan. 2020. “Exoscore: A Design Tool to Evaluate Factors Associated with Technology Acceptance of Soft Lower Limb Exosuits by Older Adults.” Human Factors 62 (3): 391–410. doi:10.1177/0018720819868122.
  • Spada, S., L. Ghibaudo, S. Gilotta, L. Gastaldi, and M. P. Cavatorta. 2018. “Analysis of Exoskeleton Introduction in Industrial Reality: Main Issues and EAWS Risk Assessment. In.” Advances in Intelligent Systems and Computing 602: 236–244.
  • Tan, C. K., H. Kadone, K. Miura, T. Abe, M. Koda, M. Yamazaki, Y. Sankai, and K. Suzuki. 2019. “Muscle Synergies during Repetitive Stoop Lifting with a Bioelectrically-Controlled Lumbar Support Exoskeleton.” Frontiers in Human Neuroscience 13: 142. doi:10.3389/fnhum.2019.00142.
  • Theurel, J., and K. Desbrosses. 2019. “Occupational Exoskeletons: Overview of Their Benefits and Limitations in Preventing Work-Related Musculoskeletal Disorders.” IISE Transactions on Occupational Ergonomics and Human Factors 7 (3–4): 264–280. doi:10.1080/24725838.2019.1638331.
  • Toussaint, H. M., A. F. de Winter, Y. de Haas, M. P. de Looze, J. H. Van Dieën, and I. Kingma. 1995. “Flexion Relaxation during Lifting: Implications for Torque Production by Muscle Activity and Tissue Strain at the Lumbo-Sacral Joint.” Journal of Biomechanics 28 (2): 199–210. doi:10.1016/0021-9290(94)00051-5.
  • Toxiri, S., A. S. Koopman, M. Lazzaroni, J. Ortiz, V. Power, M. P. de Looze, L. O’Sullivan, and D. G. Caldwell. 2018. “Rationale, Implementation and Evaluation of Assistive Strategies for an Active Back-Support Exoskeleton.” Frontiers in Robotics and AI 5: 53. doi:10.3389/frobt.2018.00053.
  • Toxiri, S., M. B. Näf, M. Lazzaroni, J. Fernández, M. Sposito, T. Poliero, L. Monica, S. Anastasi, D. G. Caldwell, and J. Ortiz. 2019. “Back-Support Exoskeletons for Occupational Use: An Overview of Technological Advances and Trends.” IISE Transactions on Occupational Ergonomics and Human Factors 7 (3–4): 237–249. doi:10.1080/24725838.2019.1626303.
  • Tsuneyasu, K., A. Ohno, Y. Fukuda, K. Ogawa, T. Tsuji, and Y. Kurita. 2018. “A Soft Exoskeleton Suit to Reduce Muscle Fatigue with Pneumatic Artificial Muscles.” Paper presented at the 9th Augmented Human International Conference, Seoul, South Korea, February 7–9.
  • Ulrey, B. L., and F. A. Fathallah. 2013. “Subject-Specific, Whole-Body Models of the Stooped Posture with a Personal Weight Transfer Device.” Journal of Electromyography and Kinesiology: official Journal of the International Society of Electrophysiological Kinesiology 23 (1): 206–215. doi:10.1016/j.jelekin.2012.08.016.
  • Wei, W., Z. Shijia, X. Yuxuan, G. Jihua, and L. Xichuan. 2020. “A Hip Active Assisted Exoskeleton That Assists the Semi-Squat Lifting.” Applied Sciences 10 (7): 2424. doi:10.3390/app10072424.
  • Wei, W., W. Wang, Z. Qu, J. Gu, X. Lin, and C. Yue. 2020. “The Effects of a Passive Exoskeleton on Muscle Activity and Metabolic Cost of Energy.” Advanced Robotics 34 (1): 19–27. doi:10.1080/01691864.2019.1707708.
  • Wesslén, J. 2018. “Exoskeleton Exploration: Research, Development, and Applicability of Industrial Exoskeletons in the Automotive Industry.” Master of Science Research Paper, Jönköping University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.