146
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Properties of PVDF-MCM41 Nanocomposites Studied by Dielectric, Raman and NMR Spectroscopy

, , , , , & show all
Pages 64-76 | Received 13 Apr 2014, Accepted 23 Jun 2014, Published online: 01 Dec 2014

References

  • R.E. Newnham, D.P Skinner, and L.E. Cross, Connectivity and piezoelectric–pyroelectric composites. Mater Res Bull. 13, 525–536 (1978).
  • C.J. Dias and D.K. Das-Gupta, Piezo- and pyroelectricity in ferroelectric ceramic-polymer composites. Key Eng Mater. 92&93, 217–248 (1994).
  • J. Małecki and B. Hilczer, Dielectric behavior of polymers and composites. Key Eng Mater. 92&93, 181–216 (1994).
  • C.J. Dias and Das-Gupta, Inorganic ceramic/ferroelectric polymer composite electrets. IEEE Trans Diel Electr Insul. 3, 706–734 (1996).
  • I. Rychetsky and J. Petzelt, Properties of ferroelectric powders and microcomposites. Ferroelectrics. 236, 223–234 (2000).
  • M.A. Campo, L.Y. Woo, T.O. Mason, and E.J. Garboczi, Frequency-dependent electrical mixing law behavior in spherical particle composites. J Electroceram. 9, 49–56 (2002).
  • J. Petzelt, J. Hlinka, S. Kamba, T. Ostapchuk, D. Noujni, and I. Rychetsky, Effective infrared response of inhomogeneous ferroelectrics. Ferroelectrics. 334, 199–210 (2006).
  • J.P. Calame, Dielectric permittivity simulation of random irregularly shaped particie composites and approximation using modified dielectric mixing laws. J Appl Phys. 104, 114108-1-11 (2008).
  • J. Petzelt, Infrared and THz spectroscopy of nanostructured dielectrics. Processing Appl Ceram. 3, 145–155 (2009).
  • B.-H. Fan, J.-W. Zha, D.-R. Wang, J. Zhao, and Z.-M. Dang, Experimental study and theoretical prediction of dielectric permittivity in BaTiO3/polyimide nanocomposite films. Appl Phys Lett. 100, 092903-1-4 (2012).
  • M.T. Sebastian, Polymer-ceramic composites of 0-3 connectivity for circuits in electronics. A review. Int J Appl Ceram Technol. 7, 415–434 (2010).
  • L. Zhang and Z.-Y. Cheng, Development of polymer-based 0-3 composites with high dielectric constant. J Adv Diel. 1, 389–406 (2011).
  • Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, and G.-H. Hud, Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog Mater Sci. 57, 660–723 (2012).
  • F. Qin and H.-X. Peng, Ferromagnetic microwires enabled multifunctional composite materials. Prog Mater Sci. 58, 183–259 (2013).
  • M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. 28, 1–63 (2000).
  • S.S. Ray and M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 28, 1539–1641 (2003).
  • K. Moller and T. Bein, Inclusion Chemistry in Periodic Mesoporous Host. Chem Mater. 10, 250–263 (1998).
  • X.S. Zhao, G.Q. Lu, and G.J. Millar, Advances in Mesoporous Molecular Sieve MCM-41. Ind Eng Chem Res. 35, 2075–2090 (1996).
  • S. Spange, A. Gräser, H. Müller, Y. Zimmermann, P. Rehak, C. Jäger, H. Fuess, and C. Baehtz, Synthesis of Inorganic/Organic Host-Guest Hybrid Materials by Cationic Vinyl Polymerization within Y Zeolites and MCM-41. Chem Mater. 13, 3698–3708 (2001).
  • N. Wang, M. Li, and J. Zhang, Polymer-filled porous MCM-41: An effective means to design polymer-based nanocomposites. Mat Lett. 59, 2685–2688 (2005).
  • L. Wei, N. Hu, and Y. Zhang, Synthesis of Polymer-Mesoporous Silica Nanocomposites. Materials. 3, 4066–4079 (2010).
  • K. Tashiro, Crystal Structure and Phase Transitions of PVDF and Related Copolymers. In: Nalwa HS, ed. Ferroelectric polymers. Chemistry, Physics and Applications. New York: Marcel Dekker Inc.; 1995: 63–181.
  • K. Uchino, Ferroelecric Devices. New York: Marcel Dekker Inc.; 2000.
  • L. Priya and J.P. Jog, Intercalated Poly(vinylidene fluoride)/Clay Nanocomposites: Structure and Properties. J Polym Sci B: Polym Phys. 41, 31–38 (2003).
  • D.R. Dillon, K.K Tenneti, C.Y. Li, F.K. Ko, I. Sics, and B.S. Hsiao, On the structure and morphology of polyvinylidene fluoride–nanoclay nanocomposites. Polymer. 47, 1678–1688.(2006)
  • J. Buckley, P. Cebe, D. Cherdack, J. Crawford, B.S. Ince, M. Jenkins, J. Pan, M. Reveley, N. Washington, and N. Wolchover, Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer. 47, 2411–2422 (2006).
  • P.K. Pallathadka, S.S. Tay, L. Tianxi, and P. Sprenger, Solid state 19F NMR study of crystal transformation in PVDF and its nanocomposites. Polymer Eng Sci. 46, 1684–1690 (2006).
  • F. Sadeghi and A. Ajji, Study of crystal structure of (polyvinylidene fluoride/clay) nanocomposite films: Effect of process conditions and clay type. Polymer Eng Sci. 49, 200–207 (2009).
  • W. Yu, Z. Zhao, W. Zheng, B. Long, Q. Jiang, G. Li, and X Ji, Crystallization behavior of poly(vinylidene fluoride)/montmorillonite nanocomposite. Polymer Eng. Sci. 49, 491–498 (2009).
  • L. Yu and P. Cebe, Effect of nanoclay on relaxation of poly(vinylidene fluoride) nanocomposites. J Polym Sci B: Polym Phys. 47, 2520–2532 (2009).
  • H. Chen and E. Ruckenstein, Nanostructures Self-Assembled in Polymer Solutions Confined in Cylindrical Nanopores. Langmuir. 25, 12315–12319 (2009).
  • T. Boccaccio, A. Bottino, G. Capannelli, and P. Piaggio, Characterization of PVDF membranes by vibrational spectroscopy. J Membrane Sci. 210, 315–329 (2002).
  • A. Salimi and A.A. Yousefi, Conformational changes and phase transformation in PVDF solution-cast films. J Polym Sci B. 42, 3487–3495 (2004).
  • S.J. Kang, Y.J. Park, J. Sung, P.S. Jo, C. Park, K.J. Kim, and B.O. Cho, Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing. Appl Phys Lett. 92, 012921-1-3 (2008).
  • M. Połomska, B. Hilczer, E. Markiewicz, K. Pogorzelec-Glaser, and A. Pietraszko, Effect of Processing Conditions on the Dielectric and Raman Response of Electroactive Polymers. Ferroelectrics. 405, 138–145 (2010).
  • Y. Zhang, F. Phillipp, G.W. Meng, L.D. Zhang, and C.H. Ye, Photoluminescence of mesoporous silica molecular sieves. J Appl Phys. 88, 2169–2171 (2000).
  • M. Kobayashi, K. Tashiro, and H. Tadokoro, Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules. 9, 158–175 (1975).
  • K. Tashiro, M. Kobayashi, and H. Tadokoro, Vibrational spectra and disorder-order transition of poly(vinylidene fluoride) form III. Macromolecules. 14, 1757–1764 (1981).
  • S. Yano, Dielectric Relaxation and Molecular Motion in Poly(vinylidene Fluoride). J Polymer Sci, Polymer PhyS A-2. 8, 1057–1072 (1970).
  • K. Nakagawa and Y. Ishida, Dielectric Relaxation and Molecular Motions in Poly(vinylidene Fluoride) with Crystal Form II. J Polymer Sci: Polymer Phys Ed. 11, 1503–1533 (1973).
  • A. Nogales, Z. Denchev, I. Šics, and T.A. Ezquerra, Influence of the Crystalline Structure in the Segmental Mobility of Semicrystalline Polymers: Poly(ethylene naphthalene-2,6 dicarboxylate). Macromolecules. 33, 9367–9375 (2000).
  • P.A. M. Steeman and J. van Turnhout, Fine Structure in the Parameters of Dielectric and Viscoelastic Relaxations. Macromolecules. 27, 5421–5427 (1994).
  • S. Stapf and R. Kimmich, Field-Cycling Magnetic Resonance Relaxometry and Field-Gradient Nuclear Magnetic Resonance Diffusometry of Polymers Confined in Porous Glasses. Evidence for a Restricted Geometry Effect. Macromolecules. 29, 1638–1641 (1996).
  • R. Kimmich and E. Anoardo, Field-cycling NMR relaxometry. Progr Nucl Magn Reson Spec. 44, 257–320 (2004).
  • R. Kimmich, Principles of Soft Matter Dynamics: Basic Theories, Non-invasive Methods, Mesoscopic Aspects. Springer Dordrecht, Heiledberg. New York: London; 2012; 462–475.
  • P.G. De Gennes, Reptation of a Polymer Chain in the Presence of Fixed Obstacles. J Chem Phys. 55, 572–579 (1971).
  • M. Doi, and S.F. Edwards, The theory of polymer dynamics. Claredon Press: Oxford; 1986.
  • R. Kausik, N. Fatkullin, N. Hüsing, and R. Kimmich, Investigations of polymer dynamics in nanoporous media by field cycling NMR relaxometry and the dipolar correlation effect. Mag Res Imag. 25, 489–492 (2004).
  • R. Kimmich, R.-O. Seitter, U. Beginn, M. Möller, and N. Fatkullin, Field-cycling NMR relaxometry of polymers confined to artificial tubes: verification of the exponent 3/4 in the spin-lattice dispersion predicted by the reptation model. Chem Phys Lett. 307, 147–152 (1999).
  • A. Denissov, M. Kroutieva, N. Fatkullin, and R. Kimmich, Segment diffusion and nuclear magnetic resonance spin-lattice relaxation of polymer chains confined in tubes: Analytical treatment and Monte-Carlo simulation of the crossover from Rouse to reptation dynamics. J Chem Phys. 116, 5217–5230 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.