294
Views
17
CrossRef citations to date
0
Altmetric
Section C: Biocompatible and Organic Polar Materials on the Nanoscale

Bioferroelectricity in Nanostructured Glycine and Thymine: Molecular Modeling and Ferroelectric Properties at the Nanoscale

, , , , , & show all
Pages 107-126 | Received 15 Jul 2014, Accepted 30 Sep 2014, Published online: 11 Mar 2015

References

  • V. S. Bystrov, E. V. Paramonova, I. K. Bdikin, S. Kopyl, A. Heredia, R. C. Pullar, and A. L. Kholkin, Bioferroelectricity: diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale. Ferroelectrics. 440(1), 3–24 (2012).
  • H. R. Leuchtag and V. S. Bystrov, Theoretical models of conformational transitions and ion conduction in voltage-dependent ion channels: bioferroelectricity and superionic conduction. Ferroelectrics. 220, 157–204 (1999).
  • N. Amdursky, P. Beker, J. Schklovsky, E. Gazit, and G. Rosenman, Ferroelectric and related phenomena in biological and bioinspired nanostructures. Ferroelectrics. 399, 107–117 (2010).
  • J. A. Tuszynski, T. J. A. Craddock, and E. J. Carpenter, Bio-ferroelectricity at the nanoscale. J. Comp. Theor. Nanoscience. 5(10), 2022–2032 (2008).
  • V. S. Bystrov, I. Bdikin, A. Heredia, R. C. Pullar, E. Mishina, A. Sigov, and A. L. Kholkin, Piezoelectricity and ferroelectricity in biomaterials: from proteins to self-assembled peptide nanotubes. In: Ciofani G., Menciassi A., eds. Piezoelectric nanomaterials for biomedical applications. Berlin Heidelberg: Springer-Verlag; 2012, 187–211.
  • S. B. Lang, Piezoelectricity, pyroelectricity and ferroelectricity in biomaterials - speculation on their biological significance. IEEE Trans. Dielectr. Electr. Insul. 7, 466–473 (2000).
  • V. Bystrov, I. Bdikin, and A. Kholkin, Computational study of bioferroelectric phenomena in organic and bio-molecular nanostructures. In: Abstract Book ISAF-ECAPD-PFM 2012, (University of Aveiro and IEEE Ultrasonics, Ferroelectrics and Frequency Control Society, Aveiro, Portugal 2012). Aveiro: University of Aveiro; 2012, 513.
  • M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials. Oxford: Clarendon Press; 1977.
  • G. A. Smolenskii, ed. Ferroelectrics and related materials. New York; Gordon and Breach; New York, 1985. (Leningrad: Nauka, in Russian).
  • J. W. Goodby, R. Blinc, N. A. Clark, S. T. Lagerwall, M. A. Osipov, S. A. Pikin, T. Sakurai, K. Yoshino, and B. Zeks, eds. Ferroelectric liquid crystals: Principles, properties and applications. Philadelphia: Gordon and Breach; 1991.
  • S. Horiuchi and Y. Tokura, Organic ferroelectrics. Nature Materials. 7, 357–366 (2008).
  • S. Horiuchi, R. Kumai, and Y. Tokura, Hydrogen bonding molecular chains for high-temperature ferroelectricity. Adv. Mater. 23, 2098 (2011).
  • F. Kagawa, S. Horiuchi, N. Minami, S. Ishibashi, K. Kobayashi, R. Kumai, Y. Murakami, and Y. Tokura, Polarization switching ability dependent on multidomain topology in a uniaxial organic ferroelectric. Nano Lett. 14(1), 239–243 (2014).
  • V. Bystrov and N. Bystrova, Bioferroelectricity and optical properties of biological systems. Proc. SPIE 2002 Advanced Organic and Inorganic Optical Materials; 5122, 132–136.
  • A. Gruverman, B. J. Rodriguez, and S. V. Kalinin, Electromechanical behavior in biological systems at the nanoscale. New York: Springer; 2007.
  • V. V. Lemanov, S. N. Popov, and G. A. Pankova, Piezoelectric properties of crystals of some protein aminoacids and their related compounds. Phys. Sol. Stat. 44, 1929–1935 (2002).
  • V. V. Lemanov, S. N. Popov, and G. A. Pankova, Protein amino acid crystals: Structure, symmetry, physical properties. Ferroelectrics. 285, 581–590 (2003).
  • G. L. Perlovich, L. K. Hansen, and A. Bauer-Brandl, The polymorphism of glycine. Thermodynamical and structural aspects. J. Therm. Anal. Calorim. 66, 699–715 (2001).
  • E. V. Boldyreva, V. A. Drebushchak, T. N. Drebushchak, I. E. Paukov, Y. A. Kovalevskava, and E. S. Shutova, Poylmorphism of Glycine: Thermodynamic aspects. Part I. Relative stability of the polymorphs. J. Therm. Anal. Calorim. 73, 409–418 (2003).
  • E. V. Boldyreva, V. A. Drebushchak, T. N. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, and E. S. Shutova, Polymorphism of Glycine: Thermodynamic aspects. Part II. Polymorphic transitions. J. Therm. Anal. Calorim. 73, 419–428 (2003).
  • A. Dawson, D. R. Allan, S. A. Belmonte, S. J. Clark, W. I. F. David, P. A. McGregor, S. Parsons, C. R. Pulham, and L. Sawyer, Effect of high pressure on the crystal structures of polymorphs of glycine. Cryst. Growth Des. 5, 1415–1427 (2005).
  • R. E. Marsh, Refinement of the crystal structure of glycine. Acta Crystallogr. 11(9), 654–663 (1958).
  • Y. Iitaka, The crystal structure of γ-glycine. Acta Crystallogr. 14, 1–10 (1961).
  • Y. Iitaka, The crystal structure of β-glycine. Acta Crystallogr. 13, 35–45 (1960).
  • Z. Latajka and H. Ratalczak, Molecular Orbital Calculations for Glycine Crystals. J. Phys. Chem. 83(21), 2785–2787 (1979).
  • E. Seyedhosseini, M. Ivanov, V. Bystrov, I. Bdikin, P. Zelenovskiy, V. Ya. Shur, A. Kudryavtsev, E. D. Mishina, A. S. Sigov, and A. L. Kholkin, Growth and Nonlinear Optical Properties of β-Glycine Crystals Grown on Pt Substrates. Cryst. Growth Des. 14(6), 2831–2837 (2014).
  • I. Bdikin, E. Seyedhosseini, B. Singh, A. Heredia, V. Bystrov, J. Gracio, and A. L. Kholkin, Piezoelectricity in microcrystals of amino acids via piezoresponse force microscopy. In: Proc. of 6th International conference Contemporary achievements of Bionanoscopy, (Moscow State University, 18-20 June 2012, Moscow 2012). Moscow: Moscow State University; 2012, 11.
  • A. Heredia, V. Meunier, I. K. Bdikin, J. Gracio, N. Balke, S. Jesse, A. Tselev, P. K. Agarwal, B. G. Sumpter, S. V. Kalinin and A. L. Kholkin, Nanoscale Ferroelectricity in Crystalline γ-Glycine. Adv. Funct. Mater. 22, 2996–3003 (2012).
  • K. Ozeki, N. Sakabe, and J. Tanaka, The Crystal Structure of Thymine. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 1038–1045 (1969).
  • R. Gerdil, The crystal structure of thymine monohydrate. Acta Cryst. 14, 333–344 (1961).
  • M. Alexe, and A. Gruverman, eds. Nanoscale characterization of ferroelectric materials. Berlin-Heidelberg: Springer; 2004.
  • A. L. Kholkin, S. V. Kalinin, A. Roelofs, and A. Gruverman, Review of ferroelectric domain imaging by Piezoresponse Force Microscopy. In: Kalinin S. V. and Gruverman A, eds. Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale. New York: Springer; 2007; 1, 173–214.
  • S. V. Kalinin, B. J. Rodriguez, J. Shin, S. Jesse, V. Grichko, T. Thundat, A. P. Baddorf, and A. Gruverman, Bioelectromechanical imaging by scanning probe microscopy: Galvani's experiment at the nanoscale. Ultramicroscopy. 106, 334–340 (2006).
  • S. V. Kalinin, S. Jesse, B. J. Rodriguez, K. Seal, A. P. Baddorf, T. Zhao, Y. H. Chu, R. Ramesh, E. A. Eliseev, A. N. Morozovska, B. Mirman, and E. Karapetian, Recent advances in electromechanical imaging on the nanometer scale: Polarization dynamics in ferroelectrics, biopolymers, and liquid imaging. Jpn. J. Appl. Phys. 46, 5674–5685 (2007).
  • S. V. Kalinin, B. J. Rodriguez, S. Jesse, E. Karapetian, B. Mirman, E. A. Eliseev, and A. N. Morozovska, Nanoscale electromechanics of ferroelectric and biological systems: a new dimension in scanning probe microscopy. Annu. Rev. Mater. Res. 37, 189–238 (2007).
  • V. S. Bystrov, Computational modeling and nanoscale characterization. Bioferroelectricity: Peptide nanotubes. Saarbruecken: LAP Lambert Academic Publishing; 2013. (In Russian, version on English: in print 2014).
  • HyperChem 7.5, Tools for Molecular Modeling; HyperChem 8.0, Professional Edition. Gainesville: Hypercube. Inc.; 2002, 2010.
  • V. S. Bystrov, Molecular modeling and molecular dynamic simulation of polarization switching phenomena in the ferroelectric polymers PVDF at the nanoscale. Physica B: Condensed Matter. 432, 21–25 (2014).
  • V. S. Bystrov, E. V. Paramonova, I. K. Bdikin, A. V. Bystrova, R. C. Pullar, and A. L. Kholkin, Molecular modelling of the piezoelectric effect in the ferroelectric polymer poly(vinylidene fluoride) (PVDF). J. Mol. Mod. 19, 3591–3602 (2013).
  • J. J. P. Stewart, Optimization of parameters for semi-empirical methods I. Method. J. Comp. Chem. 10(2), 209–220 (1989).
  • J. J. P. Stewart, Optimization of parameters for semi-empirical methods I. Applications. J. Comp. Chem. 10(2), 221–264 (1989).
  • A. Hereida, I. Bdikin, S. Kopyl, E. Mishina, S. Semin, A. Sigov, K. German, V. Bystrov, J. Gracio, and A. L. Kholkin, Temperature-driven phase transformation in self-assembled diphenylalanine peptide nanotubes. J. Phys. D: Appl. Phys. 43, 462001 (2010).
  • I. Bdikin, V. S. Bystrov, I. Delgadillo, J. Gracio, S. Kopyl, M. Wojtas, E. Mishina, A. Sigov, and A. L. Kholkin, Polarization switching and patterning in self-assembled peptide tubular structures. J. Appl. Phys. 111, 074104 (2012).
  • AIMPRO Home Page. http://aimpro.ncl.ac.uk/ (accessed May 12, 2014).
  • P. R. Britney and R. Jones, LDA calculations using a basis of Gaussian orbitals. Phys. Status Solidi B. 217, 131–171 (2000).
  • P. R. Briddon and M. J. Rayson, Accurate Kohn-Sham DFT with the speed of tight binding: current techniques and future directions in materials modeling. Phys. Status Solidi B. 248(6), 1309–1318 (2011).
  • P.-G. Jönsson and A. Kvick, Precision neutron diffraction structure determination of protein and nucleic acid components. III. The crystal and molecular structure of the amino acid α-glycine. Acta Crystallogr. 28(6), 1827–1833 (1972).
  • A. Kvick, W. M. Canning, T. F. Koetzle, and G. J. B. Williams, An experimental study of the influence of temperature on a hydrogen-bonded system: the crystal structure of γ-glycine at 83 K and 298 K by neutron diffraction. Acta Crystallogr. 36(1), 115–120 (1980).
  • K. Yamada, A. Saiki, H. Sakaue, S. Shingubara, and T. Takahagi, Study of a dielectric constant due to electronic polarization using a semiempirical molecular orbital method. Jpn. J. Appl. Phys. 40, 4829–4836 (2001).
  • K. R. Wilson, D. S. Peterka, M. Jimenez-Cruz, S. R. Leone, and M. Ahmed, VUV photoelectron imaging of biological nanoparticles: ionization energy determination of nanophase glycine and phenylalanine-glycine-glycine. Phys. Chem. Chem. Phys. 8, 1884–1890 (2006).
  • R. E. Newnham, V. Sundar, R. Yimnirun, J. Su, and Q. M. Zhang, Electrostriction:  nonlinear electromechanical coupling in solid dielectrics. J. Phys. Chem. B. 101(48), 10141–10150 (1997).
  • R. A. Kumar, R. E. Vizhi, N. Vijayan, and D. R. Babu, Structural, dielectric and piezoelectric properties of nonlinear optical γ-glycine single crystals. Physica B. 406, 2594–2600 (2011).
  • V. S. Bystrov, E. Seyedhosseini, S. Kopyl, I. K. Bdikin, and A. L. Kholkin, Piezoelectricity and ferroelectricity in biomaterials: molecular modeling and piezoresponse force microscopy measurements. J. Appl. Phys. 116(6), 066803 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.