256
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

A Prime Lead-Free Ferroelectric Ceramic for Thermal Energy Harvesting: 0.88Bi0.5Na0.5TiO3-.02SrTiO3-0.1Bi0.5Li0.5TiO3

, &
Pages 1-7 | Accepted 15 May 2014, Published online: 26 Feb 2015

References

  • R. Olsen and D. Brown, High efficieincy direct conversion of heat to electrical energy-related pyroelectric measurements. Ferroelectrics. 40, 17–27 (1982).
  • R. B. Olsen, “Ferroelectric conversion of heat to electrical energy: A Demonstration,” Journal of Energy, 6, 91–95 (1982).
  • A. Navid and L. Pilon, “Pyroelectric energy harvesting using Olsen cycles in purified and porous poly (vinylidene fluoride-trifluoroethylene)[P(VDF-TrFE)] thin films,” Smart Materials and Structures, 20, 025012 (2011).
  • P. Mane, J. Xie, K. K. Leang, and K. Mossi, “Cyclic energy harvesting from pyroelectric materials,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58, 10–17 (2011).
  • R. B. Olsen and D. Evans, “Pyroelectric energy conversion: hysteresis loss and temperature sensitivity of a ferroelectric material,” Journal of Applied Physics, 54, 5941–5944 (1983).
  • R. Kandilian, A. Navid, and L. Pilon, “The pyroelectric energy harvesting capabilities of PMN–PT near the morphotropic phase boundary,” Smart Materials and Structures, 20, 055020 (2011).
  • R. B. Olsen, D. A. Bruno, J. M. Briscoe, and E. W. Jacobs, “Pyroelectric conversion cycle of vinylidene fluoride-trifluoroethylene copolymer,” Journal of Applied Physics, 57, 5036–5042 (1985).
  • R. B. Olsen, J. M. Briscoe, D. A. Bruno, and W. F. Butler, “A pyroelectric energy converter which employs regeneration,” Ferroelectrics, 38, 975–978 (1981).
  • A. Navid, D. Vanderpool, A. Bah, and L. Pilon, “Towards optimization of a pyroelectric energy converter for harvesting waste heat,” International Journal of Heat and Mass Transfer, 53, 4060–4070 (2010).
  • D. Guyomar, S. Pruvost, and G. Sebald, “Energy harvesting based on FE-FE transition in ferroelectric single crystals,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 55, 279–285 (2008).
  • F. Y. Lee, S. Goljahi, I. M. McKinley, C. S. Lynch, and L. Pilon, “Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle,” Smart Materials and Structures, 21, 025021 (2012).
  • T. Takenaka, K.-I. Maruyama, and K. Sakata, “(Bi1/2Na1/2)TiO3−BaTiO3 system for lead-free piezoelectric ceramics,” Japanese Journal of Applied Physics, 30, 2236–2239 (1991).
  • Y. Hiruma, K. Yoshii, H. Nagata, and T. Takenaka, “Phase transition temperature and electrical properties of (Bi1/2Na1/2)TiO3–(Bi1/2A1/2)TiO3 (A = Li and K) lead-free ferroelectric ceramics,” Journal of Applied Physics, 103, 084121-084121-7 (2008).
  • A. Herabut and A. Safari, “Processing and electromechanical properties of (Bi0.5Na0.5)(1− 1.5 x) LaxTiO3 ceramics,” Journal of the American Ceramic Society, 80, 2954–2958 (1997).
  • D. Lin and K. W. Kwok, “Structure, Ferroelectric, and Piezoelectric Properties of (Bi0.5Na0.5)1− x− y− z(Bi0.5K0.5)xBaySrzTiO3 Lead-Free Ceramics,” Journal of the American Ceramic Society, 93, 806–813 (2010).
  • C. Xu, D. Lin, and K. Kwok, “Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)Tio3-BaTio3 lead-free piezoelectric ceramics,” Solid State Sciences, 10, 934–940 (2008).
  • C.-R. Zhou and L.-Y. Chai, “Dielectric and piezoelectric properties of Bi0·5(Na0·82K0·18)0·5TiO3-LiSbO3 lead-free piezoelectric ceramics,” Bulletin of Materials Science, 34, 933–936 (2011).
  • L. Pardo, A. García, K. Brebøl, E. Mercadelli, and C. Galassi, “Piezoelectric properties of lead-free submicron-structured (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics from nanopowders,” Smart Materials and Structures, 19, 115007 (2010).
  • D. Lin, K. Kwok, and H. Chan, “Ferroelectric and piezoelectric properties of (Bi0.5Na0.5)TiO3―SrTiO3―Bi0.5Li0.5TiO3 lead-free ceramics,” Journal of Alloys and Compounds, 481, 310–315 (2009).
  • P. Panda, “Review: environmental friendly lead-free piezoelectric materials,” Journal of Materials Science, 44, 5049–5062 (2009).
  • A. Chauhan, S. Patel, G. Vats, and R. Vaish, “Enhanced thermal energy harvesting using Li, K-Doped Bi0.5Na0.5TiO3 lead-free ferroelectric ceramics,” Energy Technology, 2, 205–209 (2014).
  • G. Vats, A. Chauhan, and R. Vaish, “Thermal Energy Harvesting Using Bulk Lead-Free Ferroelectric Ceramics,” International Journal of Applied Ceramic Technology, (2014). DOI: 10.1111/ijac.12214
  • G. Vats, H. S. Kushwaha, and R. Vaish, “Enormous energy harvesting and storage potential in multiferroic epitaxial thin film hetrostructures: an unforeseen era,” Materials Research Express, 1, 015503 (2014).
  • G. Vats and R. Vaish, “Selection of Lead-Free Piezoelectric Ceramics,” International Journal of Applied Ceramic Technology, 11(5), 883–893 (2014).
  • G. Vats, R. Vaish, and C. R. Bowen, “Selection of Ferroelectric Ceramics for Transducers and Electrical Energy Storage Devices,” International Journal of Applied Ceramic Technology, 11(5), 883–893 (2014).
  • G. Vats, R. Vaish, and C. R. Bowen, “An analysis of lead-free (Bi0.5Na0.5) 0.915-(Bi0.5K0.5)0.05 Ba0.02Sr0.015TiO3 ceramic for efficient refrigeration and thermal energy harvesting,” Journal of Applied Physics, 115, 013505 (2014).
  • G. Vats and R. Vaish, “Piezoelectric material selection for transducers under fuzzy environment,” Journal of Advanced Ceramics, 2, 141–148 (2013).
  • G. Vats and R. Vaish, “Selection of optimal sintering temperature of (K0.5Na0.5) 0.5NbO3 ceramics for electromechanical applications,” Journal of Asian Ceramic Societies, 2, 5–10 (2014).
  • G. Sebald, S. Pruvost, and D. Guyomar, “Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic,” Smart Materials and Structures, 17, 015012 (2008).
  • A. Khodayari, S. Pruvost, G. Sebald, D. Guyomar, and S. Mohammadi, “Nonlinear pyroelectric energy harvesting from relaxor single crystals,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 56, 693–699 (2009).
  • I. M. McKinley, R. Kandilian, and L. Pilon, “Waste heat energy harvesting using the Olsen cycle on 0.945Pb(Zn1/3Nb2/3)O3–0.055PbTiO3 single crystals,” Smart Materials and Structures, 21 035015 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.