8,293
Views
403
CrossRef citations to date
0
Altmetric
Original Articles

PZT to Lead Free Piezo Ceramics: A Review

&
Pages 128-143 | Accepted 18 Jun 2014, Published online: 26 Feb 2015

References

  • W. G. Cady, Piezoelectricity. New York: McGraw-Hill; 1946.
  • G. H. Haertling, Ferroelectric ceramics: history and technology, J Am Ceram Soc. 82, 797–818 (1999).
  • L. Yi, K. Moon, and C. P. Wong, Electronics without lead, Science. 308, 1419–1420, (2005).
  • P. K. Panda, Review: Environmental friendly lead-free piezoelectric materials, J Mater Sci., 44, 5049–5062 (2009).
  • E. Ringgaard, T. Wurlitzer, and W. W. Wolny, Properties of lead-free piezoceramics based on alkali niobates, Ferroelectrics. 319, 323–333 (2005).
  • T. Takenaka and H. Nagata, Current status and prospects of lead-free piezoelectric ceramics, J Euro Ceram Soc. 25, 2693–2700 (2005).
  • W. Liu and X. Ren, Large piezoelectric effect in Pb-free ceramics, Phy Rev Lett. 103, 257602 (2009).
  • P. Wang, Y. Li, and Y. Lu, Enhanced piezoelectric properties of (Ba0.85Ca0.15) (Ti0.9Zr0.1) O3 lead-free ceramics by optimizing calcination and sintering temperature, J Euro Ceram Soc. 31, 2005–2012 (2011).
  • B. Jaffe, H. Jaffe and W. R. Cook, Piezoelectric ceramics. London: Academic Press; 1971.
  • A. S. Bhalla, R. Guo, and E. F. Alberta, Some comments on the morphotropic phase boundary and property diagrams in ferroelectric relaxor systems, Mater Lett. 54, 264–268 (2002).
  • V. A. Isupov, Reasons for discrepancies relating to the range of coexistence of phases in lead zirconate–titanate solid solutions, Sov Phys Solid State. 22, 98–101 (1980).
  • V. A. Isupov, Phases in the PZT ceramics, Ferroelectrics. 266, 91–102 (2002).
  • R. E. Newnham, Molecular mechanisms in smart materials, Mat Res Bull. 22, 20–34 (1997).
  • D. M. Fanning, Structure property relations in ferroelectric materials. Ph.D.Thesis: University of Illinois at Urbana-Champaign, 2000.
  • P. Gonnard and M. Troccaz, Dopant distribution between A and B sites in the PZT ceramics of type ABO3, J Solid State Chem. 23, 321–326 (1978).
  • R. A. Eichel, Defect structure of oxide ferroelectrics-valence state, site of incorporation, mechanisms of charge compensation and internal bias fields, J Electroceram. 19, 11–23 (2007).
  • B. Sahoo and P. K. Panda, Effect of lanthanum, neodymium on piezoelectric, dielectric and ferroelectric properties of PZT, J Adv Ceram. 2, 37–41 (2013).
  • A. Garg and D. C. Agrawal, Effect of rare earth (Er, Gd, Eu, Nd, and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics. Mat Sci Engg B. 86, 134–143 (2001).
  • W. Kinase and K. Harada, Ferroelectricity of perovskite type crystal ABO3 for the various A ions, Ferroelectrics. 333, 21–26 (2006).
  • B. Sahoo and P. K. Panda, Ferroelectric, dielectric and piezoelectric properties of Pb1–xCex(Zr0.60Ti0.40)O3, 0 ≤ x ≤ 0.08, J Mat Sci. 42, 9684–9688 (2007).
  • S.-Y. Chu, Te-Yi Chen, and I-Ta Tsai, Effects of sintering temperature on the dielectric and piezoelectric properties of Nb-doped PZT ceramics and their applications, Integrated Ferroelectrics. 58, 1293–1303 (2003).
  • N. J. Donnelly, T. R. Shrout, and C. A. Randall, Addition of a Sr, K, Nb (SKN) combination to PZT(53/47) for high strain applications, J Am Ceram Soc, 90, 490–495, (2007).
  • H. Hirashima, E. Onishi, and M. Narakawa, Preparation of PZT powders from metal oxides, J Non-Cryst Solid. 121, 404–406 (1990).
  • L. Medvecky, M. Kmecova, and K. Saksl, Study of PbZr0.53Ti0.47O3 solid solution formation by interaction of perovskite phases, J Euro Ceram Soc. 27, 2031–2037 (2007).
  • L. B. Kong and J. Ma, PZT ceramics formed directly from oxides via reactive sintering. Mater Lett. 51, 95–100 (2001).
  • B. Sahoo, V. A. Jaleel, and P. K. Panda, Development of PZT powders by wet chemical method and fabrication of multilayered stacks/actuators, Mat Sci Engg B, 126, 80–85 (2006).
  • S. Linardos, Q. Zhang, and J. R. Alcock, An investigation of the parameters affecting the agglomerate size of a PZT ceramic powder prepared with a sol–gel technique, J Euro Ceram Soc. 27, 231–235 (2007).
  • B. W. Lee, Synthesis and characterization of compositionally modified PZT by wet chemical preparation from aqueous solution, J Euro Ceram Soc. 24, 925–929 (2004).
  • B. Sahoo and P. K. Panda, Dielectric, ferroelectric and piezoelectric properties of (1-x)[Pb0.91La0.09(Zr0.60Ti0.40)O3]–x[Pb(Mg1/3Nb2/3)O3], 0 ≤ x ≤ 1, J Mat Sci. 42, 4270–4275 (2007).
  • B. Sahoo and P. K. Panda, Fabrication of simple and ring-type piezo actuators and their characterization, Smart Materials Research. 2012, 821847 (2012).
  • P. K. Panda, B. Sahoo, S. Raja, Vijaya Kumar M. P., and V. Shankar, Electromechanical and dynamic characterization of in-house-fabricated amplified piezo actuator, Smart Materials Research. 2012, 203625 (2012).
  • R. Bechmann, Elastic, Piezoelectric, and Dielectric Constants of Polarized Barium Titanate Ceramics and Some Applications of the Piezoelectric Equations, J Acoust Soc Am. 28, 347–350 (1956).
  • T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder, Jpn J Appl Phy. 46, L97–L98 (2007).
  • H. Nagata, T. Shinya, Y. Hiruma, and T. Takenaka, Developments in Dielectric Materials and Electronic Devices, Ceramic Transactions, Vol. 167, 213–221 (2004).
  • Y. Hiruma, R. Aoyagi, H. Nagata, and T. Takenaka, Ferroelectric and Piezoelectric Properties of (Bi1/2K1/2)TiO3 Ceramics, Jpn J Appl Phys. Part 1, 44, 5040–5044 (2005).
  • Z. Yang, B. Liu, L. Wei, and Y. Hou, Structure and Electrical Properties of (1-x)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3 Ceramics Near Morphotropic Phase Boundary, Mater Res Bull. 43, 81–89 (2008).
  • Y.-R. Zhang, J.-F. Li, and B.-P. Zhang, Enhancing Electrical Properties in NBT–KBT Lead-Free Piezoelectric Ceramics by Optimizing Sintering Temperature, J Am Ceram Soc. 91, 2716–2719 (2008).
  • H. Y. Tian, K. W. Kwok, H. L. W. Chan, and C. E. Buckley, The effects of CuO-doping on dielectric and piezoelectric properties of Bi0.5Na0.5TiO3–Ba(Zr,Ti)O3 lead-free ceramics, J Mater Sci. 42, 9750–9755 (2007).
  • H. Hu, M. Zhu, F. Xie, N. Lei, J. Chen, Y. Hou, and H. Yan, Effect of Co2O3 Additive on Structure and Electrical Properties of 85(Bi1/2Na1/2)TiO3–12(Bi1/2K1/2)TiO3–3BaTiO3 Lead-Free Piezoceramics, J Am Ceram Soc. 92, 2039–2045 (2009).
  • D. Lin and K. W. Kwok, Ferroelectric and piezoelectric properties of [(Bi0.98La0.02Na1-x Lix)0.5]0.94Ba0.06TiO3 lead-free ceramics, J Mater Sci. 44, 4953–4958, (2009).
  • D. Q. Xiao, D. M. Lin, J. G. Zhu, and P. Yu, Investigation on the design and synthesis of new systems of BNT-based lead-free piezoelectric ceramics, J Electroceram. 16, 271–275 (2006).
  • D. Lin, Q. Zheng, C. Xu, and K. W. Kwok, Structure, electrical properties and temperature characteristics of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics, Appl Phys A, 93, 549–558 (2008).
  • S. H. Choy, X. X. Wang, H. L. W. Chan, and C. L. Choy, Electromechanical and ferroelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-(Bi1/2Li1/2)TiO3-BaTiO3 lead-free piezoelectric ceramics for accelerometer application, Appl. Phys. A. 89, 775–781 (2007).
  • H. Birol, D. Damjanovic, and N. Setter, Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J Euro Ceram Soc 26, 861–866 (2006).
  • H. L. Du, Z. M. Li, F. S. Tang, S. B. Qu, Z. B. Pei, and W. C. Zhou, Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering, Mater Sci Engg B 131, 83 (2006).
  • D. Zhang and Z. Zhang, Effects of K excess on the preparation and characterization of (K0.5Na0.5)NbO3 ceramics, Ferroelectrics, 466, 8–13 (2014).
  • Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Lead free piezo ceramics, Nature 432, 84 (2004).
  • Y. Gao, J. Zhang, Y. Qing, Y. Tan, Z. Zhang, and X. Hao, Remarkably Strong Piezoelectricity of Lead-Free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 Ceramic. J Am Ceram Soc. 94, 2968–2973 (2011).
  • J. L. Zhang, X. J. Zong, Y. Gao, Y. L. Qing, M. L. Zhao, and C. L. Wang, Recent study progresses of (K,Na)NbO3-based lead-free piezoelectric ceramics, J. Optoelectron Adv Mater. 12, 1921–1925 (2010).
  • J. Fu, R. Zuo, and Z. Xu, High piezoelectric activity in (Na,K)NbO3 based lead-free piezoelectric ceramics: Contribution of nanodomains, Appl Phys Lett. 99, 062901 (2011).
  • R. Zuow and J. Fu, Rhombohedral–Tetragonal Phase Coexistence and Piezoelectric Properties of (NaK)(NbSb)O3–LiTaO3–BaZrO3 Lead-Free Ceramics, J Am Ceram Soc. 94, 1467–1470 (2011).
  • D. Lin and K. W. Kwok, Piezoelectric Properties of K0.47Na0.47Li0.06NbO3–NaSbO3 Lead-Free Ceramics for Ultrasonic Transducer Applications, Int J Appl Ceram Technol. 8, 684–690 (2011)
  • J. Fang, X. Wang, R. Zuo, Z. Tian, C. Zhong, and L. Li, Narrow sintering temperature window for (K, Na)NbO3-based lead-free piezoceramics caused by compositional segregation, Phys Status Solidi A. 208, 791–794 (2011).
  • K. Wang and J.-F. Li, Low-Temperature Sintering of Li-Modified (K,Na)NbO3 Lead-Free Ceramics: Sintering Behavior, Microstructure, and Electrical Properties, J Am Ceram Soc. 93, 1101–1107 (2010).
  • H.-T. Li, B.-P. Zhang, P.-P. Shang,Y. Fan, and Q. Zhang, Phase Transition and High piezoelectric properties of Li0.058(Na0.52K0.48)0.942NbO3 Lead-Free Ceramics, J Am Ceram Soc. 94, 628–632 (2011).
  • Z.-Y. Shen, Y. Zhen, K. Wang, and J.-F. Li, Influence of Sintering Temperature on Grain Growth and Phase Structure of Compositionally Optimized High-Performance Li/Ta-Modified (Na,K)NbO3 Ceramics, J Am Ceram Soc. 92, 1748–1752 (2009).
  • Z.-Y. Shen, J.-F. Li, K. Wang, and S. Xu, Electrical and Mechanical Properties of Fine-Grained Li/Ta-Modified (Na,K)NbO3-Based Piezoceramics Prepared by Spark Plasma Sintering, J Am Ceram Soc. 93, 1378–1383 (2010).
  • F. Azough, M. Wegrzyn, R. Freer, S. Sharma, and D. Hall, Microstructure and piezoelectric properties of CuO added (K,Na,Li)NbO3 lead-free piezoelectric ceramics, J Euro Ceram Soc. 31, 569–576 (2011).
  • X. Chen, J. Wu, X. Cheng, B. Wu, W. Wu, D. Xiao, and J. Zhu, Piezoelectric properties of [Li0.03(K0.48Na0.52)0.97](Nb0.97Sb0.03)O3-(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free piezoelectric ceramics, Curr Appl Phys. 12, 752–754 (2012).
  • J. Minhong, D. Manjiao, L. Huaxin, W. Shi, and L. Xinyu, Piezoelectric and dielectric properties of K0.5Na0.5NbO3–LiSbO3–BiScO3 lead-free piezoceramics, Mat Sci Engg B. 176, 167–170 (2011).
  • S. Ye, J. Fuh and L. Lu, Effects of Ca substitution on structure, piezoelectric properties, and relaxor behavior of lead-free Ba(Ti0.9Zr0.1)O3 piezoelectric ceramics, J Alloy Comp. 541, 396–402 (2012).
  • Y. Cui, X. Liu, M. Jiang, X. Zhao, X. Shan, W. Li, C. Yuan, and C. Zhou, Lead-free (Ba0.85Ca0.15) (Ti0.9Zr0.1) O3-CeO2 ceramics with high piezoelectric coefficient obtained by low sintering temperature, Ceram Int. 38, 4761–4764 (2012).
  • W. Li, J. Hao, W. Bai, Z. Xu, R. Chu, and J. Zhai, Enhancement of the temperature stabilities in yttrium doped (Ba0.99Ca0.01) (Ti0.98Zr0.02) O3 ceramics, J Alloy Comp. 531, 46–49 (2012).
  • W. Li, Z. Xu, R. Chu, P. Fu, and P. An, Effect of Ho doping on piezoelectric properties of BCZT ceramics, Ceram Int. 38, 4353–4355 (2012).
  • X. Chou, J. Zhai, and X. Yao, Relaxor behavior and dielectric properties of MgTiO3-doped BaZr0.35Ti0.65O3 composite ceramics for tunable applications, J Am Ceram Soc. 90, 2799–2801 (2007).
  • Z. H. Chen, J. N. Ding, J. J. Xu, Y. C. Shan, J. Qu, and J. H. Qiu, Dy2O3 doped (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramics, Ferroelectrics, 460, 49–56 (2014).
  • B. Li, J. E. Blendell, and K. J. Bowman, Temperature-Dependent Poling Behavior of Lead-free BZT–BCT Piezoelectrics, J Am Ceram Soc. 94, 3192–3194 (2011).
  • J. Wu, D. Xiao, W. Wu, J. Zhu, and J. Wang, Effect of dwell time during sintering on piezoelectric properties of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics, J Alloy Comp. 509, L359– L361 (2011).
  • J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, and J. Wang, Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1-xZrx)O3 lead-free piezoelectric ceramics, J Euro Ceram Soc. 32, 891–898 (2012).
  • W. Li, Z. Xu, R. Chu, P. Fu, and G. Zang, High piezoelectric d33 coefficient of lead-free (Ba0.93Ca0.07)(Ti0.95Zr0.05)O3 ceramics sintered at optimal temperature, Mat Sci and Engg B. 176, 65–67 (2011).
  • S. T. F. Lee, K. H. Lam, X. M. Zhang, and H. L. W. Chan, High-frequency ultrasonic transducer based on lead-free BSZT piezoceramics. Ultrasonics.51, 811–814 (2011).
  • W. Li, Z. Xu, R. Chu, P. Fu, and G. Zang, Temperature Stability in Dy-doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 Lead-Free Ceramics with High Piezoelectric Coefficient, J Am Ceram Soc. 94, 3181–3183 (2011).
  • J. Wu, W. Wu, D. Xiao, J. Wang, Z. Yang, Z. Peng, Q. Chen, and J. Zhu, (Ba,Ca)(Ti,Zr)O3-BiFeO3 lead-free piezoelectric ceramics, Cur Appl Phys. 12, 534–538 (2012).
  • T. Chen, T. Zhang, J. Zhou, J. Zhang, Y. Liu, and G. Wang, Ferroelectric and piezoelectric Properties of [(Ba1-3x/2Bix)0.85Ca0.15](Ti0.90Zr0.10)O3 lead-free piezoelectric ceramics, Mater Res Bull. 47, 1104–1106 (2012).
  • Y. Q. Chen, X. J. Zheng, X. Feng, D. Z. Zhang, and S. H. Dai, Lead-free piezoelectric (Na0.5Bi0.5)0.94TiO3–Ba0.06TiO3 nanofiber by electrospinning, Phys Status Solid RRL. 3, 290–292 (2009).
  • B. Sahoo and P. K. Panda, Preparation and characterization of BaTiO3 nanofibers by electrospinning technique, Ceram Int. 38, 5189–5193 (2012).
  • M. Yoichi, Applications of piezoelectric actuators, NEC Technical Journal. 1, 82–86, (2006).
  • E. F. Crawley, Intelligent structures for aerospace: A technology overview and assessment, AIAA Journal, 32, 1689–1699 (1994).
  • K. Uchino, Ceramic actuators: principles and applications, Mater Res Soc Bull 18, 42–48 (1993).
  • J. F. Tressler, Piezoelectric transducer designs for sonar applications. In A. Safari, and E. K. Akdogan, eds. Piezoelectric and Acoustic Materials for Transducer Applications: Springer publication; 2008: 217–239.
  • H. A. Sodano and D. J. Inman, A review of power harvesting from vibration using piezoelectric materials, The Shock and Vibration Digest. 36, 197–205 (2004).
  • B. Gromek and J. J. Shen, Multiple stack piezoelectric actuator for a fuel injector. United States Patent, 2000; 6345771.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.