50
Views
2
CrossRef citations to date
0
Altmetric
SECTION E: INTERFACE AND DOMAIN ENGINEERING

Formation of Self-Assembled Domain Structures in MgOSLT

, , &
Pages 76-83 | Received 15 Jul 2014, Accepted 30 Sep 2014, Published online: 25 Mar 2015

References

  • V.Ya. Shur, Correlated nucleation and self-organized kinetics of ferroelectric domains. In Nucleation Theory Appl. edited by Schmelzer JWP WILEY-VCH, Weinheim; 178–214(2005).
  • J.V. Barth, G. Costantini, and K. Kern, Engineering atomic and molecular nanostructures at surfaces. Nature. 437, 671–679 (2005).
  • V.Ya. Shur, A.L. Gruverman, and E.L. Rumyantsev, Dynamics of domain structure in uniaxial ferroelectrics. Ferroelectrics. 111, 123–131 (1990).
  • V.Ya. Shur, A.L. Gruverman, N.Y. Ponomarev, E.L. Rumyantsev, and N.A. Tonkacheva, Domain structure kinetics in ultrafast polarization switching in lead germanate. JETP Lett. 53, 615–619 (1991).
  • V.Ya. Shur, D.K. Kuznetsov, A.I. Lobov, E.V. Nikolaeva, M.A. Dolbilov, A.N. Orlov, and V.V. Osipov, Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions. Ferroelectrics. 341, 85–93 (2006).
  • V.Ya. Shur, A.L. Gruverman, N.Y. Ponomarev, and N.A. Tonkachyova, Change of domain structure of lead germanate in strong electric field. Ferroelectrics 126, 371–376 (1992).
  • V.Ya. Shur, E.L. Rumyantsev, E.V. Nikolaeva, E.I. Shishkin, R.G. Batchko, G.D. Miller, M.M. Fejer, and R.L. Byer, Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications. Ferroelectrics. 236, 129–144 (2000).
  • V.Ya. Shur, E.L. Rumyantsev, E.V. Nikolaeva, E.I. Shishkin, D.V. Fursov, R.G. Batchko, L.A. Eyres., M.M. Fejer, R.L. Byer, and J. Sindel, Formation of self-organized nanodomain patterns during spontaneous backswitching in lithium niobate. Ferroelectrics 253, 105–114 (2001).
  • A.I. Lobov, V.Ya. Shur, I.S. Baturin, E.I. Shishkin, D.K. Kuznetsov, A.G. Shur, M.A. Dolbilov, and K. Gallo, Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3. Ferroelectrics. 341, 109–116 (2006).
  • C. Canalias, and V. Pasiskevicius, Mirrorless optical parametric oscillator. Nat. Photonics. 1, 459–462 (2007).
  • C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4. Appl. Phys. Lett. 86, 181105 (2005).
  • H. Su, S. Ruan, and Y. Guo, Generation of mid-infrared wavelengths larger than 4.0 μm in a mirrorless counterpropagating configuration. J. Opt. Soc. Am. B. 23, 1626 (2006).
  • G. Catalan, J. Seidel, R. Ramesh, and J.F. Scott, Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).
  • J. Seidel, Domain walls as nanoscale functional elements. J. Phys. Chem. Lett. 3, 2905–2909 (2012).
  • M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L.M. Eng, Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012).
  • V.Ya. Shur, I.S. Baturin, A.R. Akhmatkhanov, D.S. Chezganov, and A.A. Esin, Time-dependent conduction current in lithium niobate crystals with charged domain walls. Appl. Phys. Lett. 103, 102905 (2013).
  • V.Ya. Shur, E.L. Rumyantsev, E.V. Nikolaeva, and E.I. Shishkin, Formation and evolution of charged domain walls in congruent lithium niobate. Appl. Phys. Lett. 77, 3636–3638 (2000).
  • E.A. Eliseev, A.N. Morozovska, G.S. Svechnikov, V. Gopalan, and V.Ya. Shur, Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B. 83, 235313 (2011).
  • O.A. Louchev, N.E. Yu, S. Kurimura, and K. Kitamura, Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals. Appl. Phys. Lett. 87, 131101 (2005).
  • N.E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate. Jpn. J. Appl. Phys. 43, L1265–L1267 (2004).
  • A. Bruner, D. Eger, and S. Ruschin, Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO. J. Appl. Phys. 96, 7445 (2004).
  • E. Soergel, Visualization of ferroelectric domains in bulk single crystals. Appl. Phys. B. 81, 729–751 (2005).
  • V.Ya. Shur, and P.S. Zelenovskiy, Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy. J. Appl. Phys. 116, 066802 (2014).
  • Y. Furukawa, K. Kitamura, E. Suzukia, K. Niwa, Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system. J. Cryst. Growth. 197, 889–895 (1999).
  • S. Kumaragurubaran, S. Takekawa, M. Nakamura, and K. Kitamura, Growth of 4-in diameter MgO-doped near-stoichiometric lithium tantalate single crystals and fabrication of periodically poled structures. J. Cryst. Growth. 292, 332–336 (2006).
  • A.R. Akhmatkhanov, V.Ya. Shur, I.S. Baturin, D.V. Zorikhin, A.M. Lukmanova, P.S. Zelenovskiy, and M.M. Neradovskiy, Domain kinetics in lithium niobate single crystals with photoresist dielectric layer. Ferroelectrics. 439, 3–12 (2012).
  • V.Ya. Shur, A.R. Akhmatkhanov, M.A. Chuvakova, and I.S. Baturin, Polarization reversal and domain kinetics in magnesium doped stoichiometric lithium tantalate. Appl. Phys. Lett. 105, 152905 (2014).
  • H. Ishizuki, and T. Taira, Study on the field-poling dynamics in Mg-doped LiNbO3and LiTaO3. In Nonlinear Opt. Mater. Fundam. Appl. Washington, D.C.: OSA; 2007; WE35.
  • V.Ya. Shur, A.R. Akhmatkhanov, I.S. Baturin, and E.V. Shishkina, Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO3 produced by vapor transport equilibration. J. Appl. Phys. 111, 014101 (2012).
  • V.Ya. Shur, A.R. Akhmatkhanov, and I.S. Baturin, Fatigue effect in ferroelectric crystals: Growth of the frozen domains. J. Appl. Phys. 111, 124111 (2012).
  • V.Ya. Shur, A.I. Lobov, A.G. Shur, S. Kurimura, Y. Nomura, K. Terabe, X.Y. Liu, and K. Kitamura, Rearrangement of ferroelectric domain structure induced by chemical etching. Appl. Phys. Lett. 87, 022905 (2005).
  • P.S. Zelenovskiy, M.D. Fontana, V.Ya. Shur, P Bourson, and D.K. Kuznetsov, Raman visualization of micro- and nanoscale domain structures in lithium niobate. Appl. Phys. A. 99, 741–744 (2010).
  • P.S. Zelenovskiy, V.Ya. Shur, P. Bourson, M.D. Fontana, D.K. Kuznetsov, and E.A. Mingaliev, Raman study of neutral and charged domain walls in lithium niobate. Ferroelectrics. 398, 34–41 (2010).
  • V.Ya. Shur, E.V. Nikolaeva, E.I. Shishkin, A.P. Chernykh, K. Terabe, K. Kitamura, H. Ito, K. Nakamura, Domain shape in congruent and stoichiometric lithium tantalate. Ferroelectrics. 269, 195–200 (2002).
  • V.Ya. Shur, A.R. Akhmatkhanov, D.S. Chezganov, A.I. Lobov, I.S. Baturin, and M.M. Smirnov, Shape of isolated domains in lithium tantalate single crystals at elevated temperatures. Appl. Phys. Lett. 103, 242903 (2013).
  • V.Ya. Shur, E.L. Rumyantsev, E.V. Nikolaeva, E.I. Shishkin, R.G. Batchko, M.M. Fejer, R.L. Byer, and I. Mnushkina, Domain kinetics in congruent and stoichiometric lithium niobate. Ferroelectrics. 269, 189–194 (2002).
  • V.Ya. Shur, Domain engineering in lithium niobate and lithium tantalate: domain wall motion. Ferroelectrics. 340, 3–16 (2006).
  • V.Ya. Shur, A.R. Akhmatkhanov, I.S. Baturin, M.S. Nebogatikov, and M.A. Dolbilov, Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family. Phys. Solid State. 52, 2147–2153 (2010).
  • I.S. Baturin, M.V. Konev, A.R. Akhmatkhanov, A.I. Lobov, and V.Ya. Shur, Investigation of jerky domain wall motion in lithium niobate. Ferroelectrics. 374, 280–287 (2008).
  • V.Ya. Shur, A.R. Akhmatkhanov, and I.S. Baturin, Fatigue effect in stoichiometric LiTaO3 crystals produced by vapor transport equilibration. Ferroelectrics. 426, 142–151 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.