64
Views
7
CrossRef citations to date
0
Altmetric
SECTION E: INTERFACE AND DOMAIN ENGINEERING

Formation of Broad Domain Boundary in Congruent Lithium Niobate Modified by Proton Exchange

, , , , , , , , & show all
Pages 146-155 | Received 15 Jul 2014, Accepted 30 Sep 2014, Published online: 25 Mar 2015

References

  • E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide. Electr. Lett. 25(11), 731–732 (1985).
  • E. J. Lim, M. M. Fejer, and R. L. Byer, Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide. Electr. Lett. 25(3), 174–175 (1989).
  • V. Shur, E. Rumyantsev, R. Batchko, G. Miller, M. Fejer, and R. Byer, Physical basis of the domain engineering in the bulk ferroelectrics. Ferroelectrics. 221, 157–167 (1999).
  • V. Ya. Shur, Domain engineering in lithium niobate and lithium tantalate: domain wall motion. Ferroelectrics. 340, 3–16 (2006).
  • M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62(5), 435–436 (1993).
  • V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, R. G. Batchko, G. D. Miller, M. M. Fejer, and R. L. Byer, Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications. Ferroelectrics. 236, 129–144 (2000).
  • M. P. De Micheli, Fabrication and characterization of proton exchanged waveguides in periodically poled congruent lithium niobate. Ferroelectrics. 340, 49–62 (2006)
  • L. Chanvillard, P. Aschiéri, P. Baldi, D. B. Ostrowsky, M. De Micheli, L. Huang, and D. J. Bamford, Soft proton exchange on periodically poled LiNbO3: A simple waveguide fabrication process for highly efficient nonlinear interactions. Appl. Phys. Lett. 76, 1089–1091 (2000).
  • R. L. Byer, Quasi-phase-matched nonlinear interactions and devices. J. Nonlinear Opt. Phys. Mater. 6, 549–592 (1997).
  • D. S. Hum and M. M. Fejer, Quasi-phase-matching. C. R. Phys. 8, 180–198 (2007).
  • S. Wada, K. Yako, H. Kakemoto, T. Tsurumi, and T. Kiguchi, Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys. 98, 014109 (2005).
  • J. Fousek, D. B. Litvin, and L. E. Cross, Domain geometry engineering and domain average engineering of ferroics. J. Phys.: Cond. Matt. 13, L33–L38 (2001).
  • V. Ya. Shur, D. K. Kuznetsov, A. I. Lobov, E. V. Nikolaeva, M. A. Dolbilov, A. N. Orlov, and V. V. Osipov, Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions. Ferroelectrics. 341, 85–93 (2006).
  • V. Ya. Shur, D. K. Kuznetsov, E. A. Mingaliev, E. M. Yakunina, A. I. Lobov, and A. V. Ievlev: In situ investigation of formation of self-assembled nanodomain structure in lithium niobate after pulse laser irradiation. Appl. Phys. Lett. 99, 082901 (2011).
  • V. Ya. Shur, Correlated nucleation and self-organized kinetics of ferroelectric domains. In Schmelzer J. W. P., ed., Nucleation theory and applications, Weinheim: Wiley-VCH 178–214 (2005).
  • V. Ya. Shur, A. L. Gruverman, N. Yu. Ponomarev, and N. A. Tonkachyova, Domain structure kinetics in ultrafast polarization switching in lead germanate. JETP Lett. 53(12), 615–619 (1991).
  • V. Ya. Shur, A. L. Gruverman, N. Yu. Ponomarev, and N. A. Tonkachyova, Change of domain structure of lead germanate in strong electric field. Ferroelectrics. 126, 371–376 (1992).
  • V. Ya. Shur, A. L. Gruverman, V. V. Letuchev, E. L. Rumyantsev, and A. L. Subbotin, Domain structure of lead germanate. Ferroelectrics. 98, 29–49 (1989).
  • V. Ya. Shur, E. I. Shishkin, E. L. Rumyantsev, E. V. Nikolaeva, A. G. Shur, R. Batchko, M. Fejer, K. Gallo, S. Kurimura, K. Terabe, and K. Kitamura, Self-organization in LiNbO3 and LiTaO3. Formation of micro- and nano-scale domain patterns. Ferroelectrics. 304, 111–116 (2004).
  • M. A. Dolbilov, V. Ya. Shur, E. V. Shishkina, E. S. Angudovich, A. D. Ushakov, P. Baldi, and M. P. De Micheli, Formation of nanodomain structure in front of the moving domain wall in lithium niobate single crystal modified by proton exchange. Ferroelectrics. 442, 82–91 (2013).
  • M. A. Dolbilov, E. I. Shishkin, V. Ya. Shur, S. Tascu, P. Baldi, and M. P. De Micheli, Abnormal domain growth in lithium niobate with surface layer modified by proton exchange. Ferroelectrics. 398, 108–114 (2010).
  • V. Ya. Shur, Kinetics of ferroelectric domains: application of general approach to LiNbO3 and LiTaO3. J. Mater. Sci. 41(1), 199–210 (2006).
  • V. Ya. Shur, E. V Nikolaeva, E. I Shishkin, A. P Chernykh, K. Terabe, K. Kitamura, H. Ito, and K. Nakamura, Domain shape in congruent and stoichiometric lithium tantalate. Ferroelectrics. 269, 195–200 (2002).
  • V. Ya. Shur, Nano- and micro-domain engineering in normal and relaxor ferroelectrics, In: Ye Z. G. ed., Handbook of advanced dielectric, piezoelectric and ferroelectric materials. Synthesis, properties and applications, Woodhead Publishing Ltd., Cambridge: 622–669 (2008).
  • E. I. Shishkin, E. V. Nikolaeva, V.Ya. Shur, M. F. Sarmanova, M. A. Dolbilov, M. S. Nebogatikov, D. O. Alikin, O. A. Plaksin, and N. V. Gavrilov, Abnormal domain evolution in lithium niobate with surface layer modified by Cu ion implantation. Ferroelectrics. 399, 49–57 (2010).
  • D. O. Alikin, E. I. Shishkin, E. V. Nikolaeva, V. Ya. Shur, M. F. Sarmanova, A. V. Ievlev, M. S. Nebogatikov, and N. V. Gavrilov, Formation of self-assembled domain structures in lithium niobate modified by Ar ions implantation. Ferroelectrics. 399, 35–42 (2010).
  • V. Ya. Shur, D. O. Alikin, A. V. Ievlev, M. A. Dolbilov, M. F. Sarmanova, and N. V. Gavrilov, Formation of nanodomain structures during polarization reversal in congruent lithium niobate implanted with Ar ions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1934–1941 (2012).
  • Yu. N. Korkishko and V. A. Fedorov, Ion exchange in single crystals for integrated optics and optoelectronics. Cambridge: Cambridge International Science; 1999.
  • J. L. Jackel, R. E. Rice, and J. J. Veslka, Proton exchange for high-index waveguides in LiNbO3. Appl. Phys. Lett. 41, 607–608 (1982).
  • M. P. De Micheli, J. Botineau, S. Neveu, P. Sibillot, D. B. Ostrowsky, and M. Papuchon, Independent control of index and profiles in proton-exchanged lithium niobate guides. Opt. Lett. 8, 114–115 (1983).
  • M. A. Dolbilov, V. Ya. Shur, E. I. Shishkin, M. F. Sarmanova, E. V. Nikolaeva, S. Tascu, P. Baldi, and M. P De Micheli, Influence of surface layers modified by proton exchange on domain kinetics of lithium niobate. Ferroelectrics 374, 14–19 (2008).
  • R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, Backswitch Poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation. Appl. Phys. Lett. 75(12), 1673–1675 (1999).
  • V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. G. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, Nanoscale backswitched domain patterning in lithium niobate. Appl. Phys. Lett. 76(2), 143–145 (2000).
  • V. Ya. Shur, P. S. Zelenovskiy, M. S. Nebogatikov, D. O. Alikin, M. F. Sarmanova, A. V. Ievlev, E. A. Mingaliev, and D. K. Kuznetsov, Investigation of the nanodomain structure formation by piezoelectric force microscopy and Raman confocal microscopy in LiNbO3 and LiTaO3 crystals. J. Appl. Phys. 110, 052013 (2011).
  • V. Ya. Shur and P. S. Zelenovskiy, Micro- and nanodomain imaging in uniaxial ferroelectrics: joint application of optical, confocal Raman and piezoelectric force microscopy. J. Appl. Phys. 116, 066802 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.