69
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Domain structure investigation of triglycine sulfate by digital in-line holographic microscopy

&
Pages 172-182 | Accepted 20 Aug 2015, Published online: 22 Feb 2016

References

  • F. Schwarz, R. R. Poole, Performance Characteristics of a Small TGS Detector Operated in the Pyroelectric Mode, Appl. Opt. 9, 1940, (1970).
  • E. H. Putley, Semiconductors and Semimetals, vol. 5, Academic, New York, p. 259, (1970).
  • Y. H. Xu, Ferroelectric and Piezoelectric Materials, Science Press, Beijing, p. 332, (1978).
  • B. T. Mathias, C.F. Miller, and J. P. Remeika, Ferroelectricity of glycine sulfate, Phys Rev. 104, 849–850, (1956).
  • S. Hoshino, Y. Okaya, R. Pepinsky, Crystal structure of ferroelectric phase of (glycine)3.H2SO4, Phys. Rev. 115, 323–330, (1959).
  • N. Nakatani, Observation of ferroelectric domain structure in TGS, Ferroelectrics, 412, 238–265, (2011).
  • D. Gabor, Nature, 161, 777–778 (1948).
  • G. L. Rogers, Experiments in diffraction microscopy, Proc. Roy. Soc. Edinburgh 63A, 193–221 (1952).
  • V. Striano et al., Digital holographic microscope for dynamic characterization of a micromechanical shunt switch, Fringe 2005, 662–666 (2006).
  • H. Fein, Application of holographic interferometry for dynamic vibration analysis of a jet engine turbine compressor rotor, Howard Fein Polaris Research Group (USA)Proc. SPIE 5005, Practical Holography XVII and Holographic Materials IX, 307 (May 30, 2003).
  • J. Katz, and J. Sheng, Applications of Holography in Fluid Mechanics and Particle Dynamics, Annual Review of Fluid Mechanics, 42, 531–555 (2010).
  • B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, P. J. Magistretti, Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy, Optics Express Vol. 13, Issue 23, 9361–9373 (2005).
  • A. Mölder, M. Sebesta, M. Gustafsson, L. Gisselson, A. G. Wingren, K. Alm, Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography, J.Microsc., 232(2), 240–7, (2008).
  • N. Pavillon, J. Kühn, C. Moratal, P. Jourdain, C. Depeursinge, P. J. Magistretti, Early Cell Death Detection with Digital Holographic Microscopy, PLoS ONE 7(1), e30912, (2012).
  • M. Falck Miniotis, A. Mukwaya, Gjörloff Wingren, A Digital Holographic Microscopy for Non-Invasive Monitoring of Cell Cycle Arrest in L929 Cells, PLoS ONE 9(9), e106546, (2014).
  • P. Memmolo, F. Merola, L. Miccio, M. Iannone, M. Ventre, P. A. Netti, A. Finizio, M. Paturzo, C. Distante, P. Ferraro, Morphological analysis framework of living cells by digital holography, Frontiers in Optics 2014, OSA Technical Digest (online), Optical Society of America, paper FTu5E.2, (2014).
  • J. Hatano, F. Suda, H. Futama, Improved powder-pattern technique for delineating ferroelectric domains, Jpn. J. Appl., 12, 1644–1645, (1973).
  • C. Ke, X. Wang, X.P. Hu, S. N. Zhu, M. Qi, Nanoparticle decoration of ferroelectric domain patterns in LiNbO3 crystal, J. Appl. Phys., 101, 064107–064117, (2007).
  • M. Müller, E. Soergel, K. Buse, Visualization of ferroelectric domains with coherent light, Opt.Lett., 28, 2515–2517, (2003).
  • G. K. H. Pang, K. Z. Baba-Kishi, Characterization of butterfly single crystals of BaTiO3 by atomic force, optical and scanning, J. Phys. D: Appl. Phys., 2846, 2846–2853, (1998).
  • P. R. Potnis, J.E. Huber, J. P. Sutter, F. Hofmann, B. Abbey, A. M. Korsunsky, Mapping of domain structure in Barium Titanate single crystals by synchrotron X-ray topography, Proc. SPIE, 7644A, 1–10, (2010).
  • W. J. Merz, Domain properties of BaTiO3, Phys. Rev., 7, 421–422. (1952).
  • M. Mulvmill, K. Uchino, Z. Li, W. Cao, In-situ observation of the domain configurations during the phase transitions in barium titanate, Phil. Mag. B, 74, 25–36, (1996).
  • N. Niizeki, M. Hasegawa, Direct Observation of Antiparallel 180° Domains in BaTiO3 by X-Ray Anomalous Dispersion Method, J. Phys. Soc. Jpn., 19, 550–554, (1964).
  • D. V. Roshchupkin, D. V. Irzhak, V. V. Antipov, Study of LiNbO3 and LiTaO3 ferroelectric domain structures using high-resolution X-ray diffraction under application of external electric field, J. Appl. Phys., 105, 024112–024117, (2009).
  • J. E. Daniels, T. R. Finlayson, M. Davis, D. Damjanovic, A. J. Studer, M. Hoffman, J. L. Jones, Neutron diffraction study of the polarization reversal mechanism in [111]c-oriented Pb(Zn1/3Nb2/3)O3-xPbTiO3, J. Appl. Phys., 101, 104108, (2007).
  • R. L. Bihan, Study of ferroelectric and ferroelastic domain structures by scanning electron microscopy, Ferroelectrics, 97, 19–46, (1989).
  • L. A. Bursill, P. J. Lin, Microdomains observed at the ferroelectric/paraelectric phase transition of barium titanate, Nature, 311, 550–552, (1984).
  • Y. H. Hu, H. M. Chan, Z. X. Wen, M. P. Harmer, Scanning Electron Microscopy and Transmission Electron Microscopy Study of Ferroelectric Domains in Doped BaTiO3, J. Am.Ceram. Soc., 69, 594–602,(1986).
  • F. Tsai, V. Khiznichenko, J. Cowley, High-resolution electron microscopy of 90° ferroelectric domain boundaries in BaTiO3 and Pb(Zr0.52Ti0.48)O3, Ultramicroscopy, 45, 55–63, (1992).
  • L. M. Eng, M. Friedrich, J. Fousek, P. Günter, Deconvolution of topographic and ferroelectric contrast by noncontact and friction force microscopy, J. Vac. Sci. Technol. B, 14, 1191–1196, (1996).
  • I. Peruhov, E. Mihaylova, Observation of nanoparticles by digital in-line holographic microscopy, Fourth International Symposium on Advanced Micro- and Mesoporous Materials, Varna, Bulgaria, September 6–9, (2011).
  • M. Seifi, C. Fournier, L. Denis, HoloRec3D (2012).
  • J. Novotny, F. Moravec, J. Cryst. Growth 11 (3), 329–335, (1971).
  • T. C. Damen, S. P. S. Porto, B. Tell, Phys. Rev. 142, 570, (1960).
  • E. M. Mihaylova, “Ferroelectric and pyroelectric properties of TGS monocrystals with rare earth dopants”, PhD Thesis, Plovdiv University, 2000, p.99

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.