49
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Formation of self-assembled domain structures in single crystals of lithium tantalate with artificial dielectric layer

, , , &
Pages 92-101 | Received 29 Aug 2015, Accepted 30 Oct 2015, Published online: 15 Apr 2016

References

  • R. L. Byer, Quasi-phasematched nonlinear interactions and devices. J Nonlinear Opt Phys Mater. 6, 549–592 (1997).
  • J. A. Armstrong, N. Bloembergen, J. Ducuing, P. S. Pershan, Interactions between light waves in a nonlinear dielectric. Phys Rev. 127, 1918–1939 (1962).
  • D. S. Hum, M. M. Fejer, Quasi-phasematching. Comptes Rendus Phys. 8, 180–198 (2007).
  • V. Ya. Shur, A. R. Akhmatkhanov, I. S. Baturin, Micro- and nano-domain engineering in lithium niobate. Appl Phys Rev. 2, 040604 (2015).
  • G. Catalan, J. Seidel, R. Ramesh, J. F. Scott, Domain wall nanoelectronics. Rev Mod Phys. 84, 119–156 (2012).
  • A. Crassous, T. Sluka, A. K. Tagantsev, N. Setter, Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat Nanotechnol. 10, 614–618 (2015).
  • E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, V. Ya. Shur, Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys Rev B. 83, 235313 (2011).
  • M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, L. M. Eng, Conducting domain walls in lithium niobate single crystals. Adv Funct Mater. 22, 3936–3944 (2012).
  • J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y. H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, R. Ramesh: Conduction at domain walls in oxide multiferroics. Nat Mater. 8, 229–234 (2009).
  • J. Seidel, Domain walls as nanoscale functional elements. J Phys Chem Lett. 3, 2905–2909 (2012).
  • A. Nguyen, P. Sharma, T. Scott, E. Preciado, V. Klee, D. Z. Sun, I. H. Lu, D. Barroso, S. Kim, V. Ya. Shur, A. R. Akhmatkhanov, A. Gruverman, L. Bartels, P. A. Dowben, Toward ferroelectric control of monolayer MoS2. Nano Lett. 15, 3364–3369 (2015).
  • X. Liu, K. Kitamura, K. Terabe, H. Hatano, N. Ohashi, Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect. Appl Phys Lett. 91, 044101 (2007).
  • S. Damm, N. C. Carville, B. J. Rodriguez, M. Manzo, K. Gallo, J. H. Rice, Plasmon enhanced Raman from Ag nanopatterns made using periodically poled lithium niobate and periodically proton exchanged template methods. J Phys Chem C. 116, 26543–26550 (2012).
  • S. Habicht, R. J. Nemanich, A. Gruverman, Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects. Nanotechnology. 19, 495303 (2008).
  • S. Damm, N. C. Carville, M. Manzo, K. Gallo, S. G. Lopez, T. E. Keyes, R. J. Forster, B. J. Rodriguez, J. H. Rice, Surface enhanced luminescence and Raman scattering from ferroelectrically defined Ag nanopatterned arrays. Appl Phys Lett. 103, 083105 (2013).
  • M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J Quantum Electron. 28, 2631–2654 (1992).
  • V. Ya. Shur, Domain nanotechnology in lithium niobate and lithium tantalate crystals. Ferroelectrics. 399, 97–106 (2010).
  • V. Ya. Shur, Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3. J Mater Sci. 41, 199–210 (2006).
  • V. Ya. Shur, Y. A. Popov, N. V. Korovina, Bound internal field in lead germanate. Phys Solid State. 26, 471–474 (1984).
  • V. Ya. Shur, A. R. Akhmatkhanov, I. S. Baturin, M. S. Nebogatikov, M. A. Dolbilov, Complex study of bulk screening processes in single crystals of lithium niobate and lithium tantalate family. Phys Solid State. 52, 2147–2153 (2010).
  • I. S. Baturin, A. R. Akhmatkhanov, V. Ya. Shur, M. S. Nebogatikov, M. A. Dolbilov, E. A. Rodina, Characterization of bulk screening in single crystals of lithium niobate and lithium tantalate family. Ferroelectrics. 374, 1–13 (2008).
  • A. R. Akhmatkhanov, M. A. Chuvakova, I. S. Baturin, V. Ya. Shur, Formation of self-assembled domain structures in MgOSLT. Ferroelectrics. 476, 76–83 (2015).
  • L. Tian, V. Gopalan, L. Galambos, Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration. Appl Phys Lett. 85, 4445–4447 (2004).
  • V. Gopalan, M. C. Gupta, Observation of internal field in LiTaO3 single crystals: Its origin and time-temperature dependence. Appl Phys Lett. 68, 1995–1997 (1996).
  • V. Ya. Shur, A. R. Akhmatkhanov, I. S. Baturin, E. V. Shishkina, Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO3 produced by vapor transport equilibration. J Appl Phys. 111, 014101 (2012).
  • D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, M. M. Fejer, Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion. J Appl Phys. 101, 093108 (2007).
  • S. Kim, V. Gopalan, K. Kitamura, Y. Furukawa, Domain reversal and nonstoichiometry in lithium tantalate. J Appl Phys. 90, 2949–2963 (2001).
  • V. Gopalan, T. E. Mitchell, In situ video observation of 180° domain switching in LiTaO3 by electro-optic imaging microscopy. J Appl Phys. 85, 2304–2311 (1999).
  • C. C. Battle, S. Kim, V. Gopalan, K. Barkocy, M. C. Gupta, Q. X. Jia, T. E. Mitchell, Ferroelectric domain reversal in congruent LiTaO3 crystals at elevated temperatures. Appl Phys Lett. 76, 2436–2438 (2000).
  • A. R. Akhmatkhanov, V. Ya. Shur, I. S. Baturin, D. V. Zorikhin, Lukmanova AM, Zelenovskiy PS, Neradovskiy MM: Domain kinetics in lithium niobate single crystals with photoresist dielectric layer. Ferroelectrics. 439, 3–12 (2012).
  • W. J. Merz, Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev. 95, 690–698 (1954).
  • V. Ya. Shur, A. R. Akhmatkhanov, M. A. Chuvakova, I. S. Baturin, Polarization reversal and domain kinetics in magnesium doped stoichiometric lithium tantalate. Appl Phys Lett. 105, 152905 (2014).
  • V. Shur, E. Rumyantsev, S. Makarov, Kinetics of phase transformations in real finite systems: Application to switching in ferroelectrics. J Appl Phys. 84, 445–451 (1998).
  • V. Ya. Shur, E. L. Rumyantsev, S. D. Makarov, V. V. Volegov, How to extract information about domain kinetics in thin ferroelectric films from switching transient current data. Integr Ferroelectr. 5, 293–301 (1994).
  • V. Ya. Shur, I. S. Baturin, E. I. Shishkin, M. V. Belousova, New approach to analysis of the switching current data in ferroelectric thin films. Ferroelectrics. 291, 27–35 (2003).
  • V. Ya. Shur, E. L. Rumyantsev, S. D. Makarov, A. L. Subbotin, V. V. Volegov, Transient current during switching in increasing electric field as a basis for a new testing method. Integr Ferroelectr. 10, 223–230 (1995).
  • V. Ya. Shur, A. R. Akhmatkhanov, D. S. Chezganov, A. I. Lobov, I. S. Baturin, M. M. Smirnov, Shape of isolated domains in lithium tantalate single crystals at elevated temperatures. Appl Phys Lett. 103, 3–7 (2013).
  • A. R. Akhmatkhanov, M. A. Chuvakova, E. M. Vaskina, V. Ya. Shur, Polarization reversal process in MgO doped congruent lithium tantalate single crystals. Ferroelectrics. 476, 57–68 (2015).
  • V. Ya. Shur, D. K. Kuznetsov, A. I. Lobov, E. V. Nikolaeva, M. A. Dolbilov, A. N. Orlov, V. V. Osipov, Formation of self-similar surface nano-domain structures in lithium niobate under highly nonequilibrium conditions. Ferroelectrics. 341, 85–93 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.