118
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Physical properties of strontium barium niobate thin films prepared by polymeric chemical method

, , , &
Pages 177-186 | Received 29 Aug 2015, Accepted 30 Oct 2015, Published online: 15 Apr 2016

References

  • A. M. Glass, Investigation of the electrical properties of Sr1-xBaxNb2O6 with special reference to pyroelectric detection. J Appl Phys. 40, 4699–4713 (1969).
  • J. D. Zook, and S. T. Liu, Pyroelectric effects in thin film. J Appl Phys. 49, 460–4606 (1978).
  • S. Sakamoto, and T. Yazaki, Anomalous electro‐optic properties of ferroelectric strontium barium niobate and their device applications. Appl Phys Lett. 22, 429–431 (1973).
  • M. Horowitz, A. Bekker, and B. Fischer, Broadband second‐harmonic generation in SrxBa1-xNb2O6 by spread spectrum phase matching with controllable domain gratings. Appl Phys Lett. 62, 2619–2621 (1993).
  • P. B. Jamieson, S. C. Abrahams, and J. L. Bernstein, Ferroelectric tungsten bronze-type crystal structures. I. Barium strontium niobate Ba0.27Sr0.75Nb2O5.78. J Chem Phys. 48, 5048–5057 (1968).
  • M. S. Kim, P. Wang, J. H. Lee, J. J. Kim, H. Y. Lee, and S. H. Cho, Site occupancy and dielectric characteristics of strontium barium niobate ceramics: Sr/Ba ratio dependence. Jpn J Appl Phys. 41, 7042–7047 (2002).
  • M. Tyunina, J. Levoska, S. Leppavuori, and A. Stemberg, Dielectric properties of pulsed laser deposited films of PbMg1/3Nb2/3-PbTiO3 and PbSc1/2Nb1/2O3-PbTiO3 relaxor ferroelectrics. J Appl Phys. 86, 5179–5184 (1999).
  • N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys Rev Lett. 80, 1988–1981 (1998).
  • N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys Rev B. 61, R825–R829 (2000).
  • T. M. Shaw, S. Trolier-McKinstry, and P. C. McIntyre, The properties of ferroelectric films at small dimensions. Annu Rev Mater Sci. 30, 263–298 (2000).
  • Y. Xu, C. J. Chen, R. Xu, and J. D. Mackenzie, Ferroelectric Sr0.60Ba0.40Nb2O6 thin-films by the sol-gel process - electrical and optical-properties. Phys Rev B. 44, 35–41 (1991).
  • S. Hirano, T. Yogo, K. Kikuta, and K. Ogiso, Preparation of strontium barium niobate by sol-gel method. J Am Ceram Soc. 75, 1697–1700 (1992).
  • M. Cuniot-Ponsard, J. M. Desvignes, B. Ea-Kim, and E. Leroy, Radio frequency magnetron sputtering deposition of hetero-epitaxial strontium barium niobate thin films (SrxBa1-xNb2O6). J Appl Phys. 93, 1718–1724 (2003).
  • Y. Yin, X. H. Fu, and H. Ye, Growth and properties of highly orientated Sr0.75Ba0.25Nb2O6 thin films on silicon substrates with MgO or TiN buffer layers. Thin Solid Films. 519, 6403–6407 (2011).
  • S. S. Thöny, K. E. Youden, J. S. Harris, and L. Hesselink, Growth of epitaxial strontium barium niobate thin films by pulsed laser deposition. Appl Phys Lett. 65, 2018–2020 (1994).
  • X. L. Guo, Z. G. Liu, X. Y. Chen, S. N. Zhu, S. B. Xiong, W. S. Hu, and C. Y. Lin, Pulsed laser deposition of SrxBa1-xNb2O6/MgO bilayered films on Si wafer in waveguide farm. J Phys D Appl Phys. 29, 1632–1635 (1996).
  • M. J. Nystrom, B. W. Wessels, W. P. Lin, G. K. Wong, D. A. Neumayer, and T. J. Marks, Nonlinear optical properties of textured strontium barium niobate thin films prepared by metalorganic chemical vapor deposition. Appl Phys Lett. 66, 1726–1728 (1995).
  • M. K. Lee, and R. S. Feigelson, Growth of epitaxial strontium barium niobate thin films by solid source metal-organic chemical vapor deposition. J Crystal Growth. 180, 220–228 (1997).
  • W. L. Warren, B. A. Tuttle, D. Dimos, G. E. Pike, H. S. Al-Shareef, R. Ramesh, and J. T. Evans, Imprint in ferroelectric capacitors. Jpn J Appl Phys. 35, 1521–1524 (1996).
  • E. C. Lima, E. B. Araujo, A. G. Souza, A. R. Paschoal, I. K. Bdikin, and A. L. Kholkin, Structural depth profile and nanoscale piezoelectric properties of randomly oriented Pb(Zr0.50Ti0.50)O3 thin films. J Phys D Appl Phys. 45, 215304 (2012).
  • M. Pechini, U. S. Pat. No 3 330 697, (July 11 1967).
  • H. M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151–152 (1967).
  • A. C. Larson, and R. B. Von Dreele, General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR. 86–748 (1994).
  • B. H. Toby, EXPGUI, a graphical user interface for GSAS. J Appl Cryst. 34, 210–213 (2001).
  • P. Thompson, D. E. Cox, J. B. Hastings, Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J Appl Crystallogr. 20, 79–83 (1987).
  • L. B. McCusker, R. B. Von Dreele, D. E. Cox, D. Louer, and P. Scardi, Rietveld refinement guidelines. J Appl Cryst. 32, 36–50 (1999).
  • I. Bhaumik, S. Ganesamoorthy, R. Bhatt, N. Subramanian, A. K. Karnal, P. K. Gupta, S. Takekawa, and K. Kitamura, Influence of cerium doping on the dielectric relaxation of Sr0.75Ba0.25Nb2O6 single crystal grown by the double crucible Stepanov technique. J Alloys Compd. 621, 26–29 (2015).
  • A. Infortuna, P. Muralt, M. Cantoni, A. Tagantsev, and N. Setter, Microstructural and electrical properties of (Sr,Ba)Nb2O6 thin films grown by pulsed laser deposition. J Eur Ceram Soc. 24, 1573–1577 (2004).
  • F. Chu, N. Setter, and A. K. Tagantsev, The spontaneous relaxor‐ferroelectric transition of Pb(Sc0.5Ta0.5)O3. J Appl Phys. 74, 5129–5134 (1993).
  • S. Ganesamoorthy, I. Bhaumik, R. Bhatt, A. K. Karnal, P. K. Gupta, S. Kumaragurubaran, R. Mohankumar, K. Kitamura, S. Takekawa, and M. Nakamura, A comparative study of dielectric relaxation in Sr0.61Ba0.39Nb2O6 and Sr0.75Ba0.25Nb2O6 single crystals. Jpn J Appl Phys. 47, 1012–1015 (2008).
  • D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys. 68, 2916–2921 (1990).
  • A. K. Tagantsev, Vogel-Fulcher relationship for the dielectric permittivity of relaxor ferroelectrics. Phys Rev Lett. 72, 1100–1103 (1994).
  • L. E. Cross, Relaxor ferroelectrics. Ferroelectrics. 76, 241–267 (1987).
  • G. Burns, and F. H. Dacol, Crystalline ferroelectrics with glassy polarization behavior. Phys Rev B. 28, 2527–2530 (1983).
  • A. Dixit, S. B. Majumder, R. S. Katiyar, and A. S. Bhalla, Relaxor behavior in sol-gel-derived BaZr(0.40)Ti(0.60)O3 thin films. Appl Phys Lett. 82, 2679–2681 (2003).
  • S. Kumar, D. A. Ochoa, J. E. Garcia, and K. B. R. Varma, Relaxor Ferroelectric Behavior and Structural Aspects of SrNaBi2Nb3O12 ceramics. J Am Ceram Soc. 95, 1339–1342 (2012).
  • A. E. Glazounov, A. J. Bell, A. K. Tagantsev, Relaxors as superparaelectrics with distributions of the local transition-temperature. J Phys Condens Matter. 7,4145–4168 (1995).
  • J. K. Raye, and R. C. Smith, A temperature-dependent hysteresis model for relaxor ferroelectric compounds. Proc. SPIE 5383, Smart Structures and Materials 2004: Modeling, Signal Processing, and Control, 1 (July 26, 2004).
  • H. N. Al-Shareef, D. Dimos, W. L. Warren, and B. A. Tuttle, Voltage offsets and imprint mechanism in SrBi2Ta2O9 thin films. J Appl Phys. 80, 4573–4577 (1996).
  • M. Grossmann, O. Lohse, D. Bolten, U. Boettger, T. Schneller, and R. Waser, The interface screening model as origin of imprint in PbZrxTi1-xO3 thin films. I. Dopant, illumination, and bias dependence. J Appl Phys. 92, 2680–2687 (2002).
  • A. Gruverman, B. J. Rodriguez, R. J. Nemanich, and A. I. Kingon, Nanoscale observation of photoinduced domain pinning and investigation of imprint behavior in ferroelectric thin films. J Appl Phys. 92, 2734–2739 (2002).
  • E. B. Araujo, E. C. Lima, I. K. Bdikin, and A. L. Kholkin, Thickness dependence of structure and piezoelectric properties at nanoscale of polycrystalline lead zirconate titanate thin films. J Appl Phys. 113, 187206 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.